大甲溪上游浮游生物相及水質之調查

雷淇祥 陳建初

陳昭寬 劉秉忠

大甲溪上游浮游生物相及水質之調查

The Study on the Plankton and Water Quality of the Upper Portion of Ta-chia River

雷淇祥 陳建初陳昭寬 劉秉忠

目 錄

一水質語	部份	****	I
1.前			1
2 結	果與討論	• • • • • •	1
3.謝節	数 数	••••	3
4. 參	考文獻	• • • • •	4
5. 表	***************************************	•••••	5
二浮游	生物相部份		II
1.摘	要		25
2 前	言····································	•••••	26
3.材	料與方法	* 1 * * * *	· 26
4. 結	果	•••••	· 27
5.討	論		· 31
6. 謝	新		• 35
	·考文獻···································		
8. 圖	***************************************	• • • • •	- 39
	· {片···································		
10. 夷		• • • • •	· 61
	· 錄		

大甲溪上游浮游生物及水質之調查

(水質部份)

陳 建 初 劉 秉 忠

國立台灣海洋學院養殖學系

前

櫻花鈎吻鮭爲密封式且爲幾乎絕跡之鮭類分布於大甲溪之上游。數年來由於橫貫公路、高山山 坡地之濫墾以及高冷區水果及蔬菜之種植,櫻花鈎吻鮭受到了相當的威脅,一年一年的減少,政府 , 有鑑於此特訂定生態保護法,將櫻花鈎吻鮭列爲國竇級魚類,且在山上設立繁殖中心,人工繁殖魚 苗·再施放回溪游。爲了瞭解大甲溪上游櫻花鈎吻鮭之棲息環境·因此調查水質經年之變化,評估 此水域富養化程度及做爲生態保育之參考。

一調査方法:

時間:75.年10.月至76.年6.日,每隔2星期赴現場採樣一次,共採樣14次。採樣點爲大甲溪之上游 包括 德基水庫大 覇(st.1)、字能(st.2)、松茂(st.3)及中興路口(st.4)、平等 (st.5)及武陵(st.6)等6個採樣點(Fig.1)。

每次採樣於現場測定氣溫、水溫、 pH 值、溶氧量及導電度,並採水帶回實驗室分析硬度 、總鹼度、濁度、氨氮、亞硝酸氮、硝酸氮、正磷酸磷及硫化物等各項水質因子。

二測定方法:

一般根據「水質分析」以及「Standard methods」分析。

`溫度:以 100°± 0.2℃水銀溫度計測定。。

pH值:用 Photovolt 112 型 pH meter 測定。

溶氧量(DO):以Winkler 法現場測定。

導電度:以Nyrron 公司之導電度計 (Model EP meter)测定。

總硬度:以EDTA Titrimetric method 測定。

鈣(Ca):以NANA當指示劑用 EDTA 滴定法測定。

總鹼度:以BCG當指示劑以0.02N H2SO4測定。

化學需氧量(COD):以鹼性高錳酸鉀法測定。

懸浮固體: (S.S.):以玻璃纖維濾紙過濾 500 ml 水様,再將濾紙於 105°~ 110 ℃烘乾秤重得之。

濁度:以Nephe lome tric 法測定之。

總氨氮:(Ammonia-N):以 Phenol hypochlorite 法測定。

亞硝酸氮(NOz-N):以Bendschreider 及Robinson 法測定。

硝酸氮(NO₁-N):以Ultraviolet Sapectrophotometric Screening Method 測定。

總磷 (T-P):以Potassium persulfate-Molybdenum blue 法測定。

正磷酸磷 (PO4 - P) ;以Molybdenum blue ascorbic acid 法測定。

硫化物(Sulfide):以Methylene blue Method 測定。

矽酸(SiO,):以Molybdoslicate 法測定。

棄綠囊甲:以Trichromatic 法測定。

結果與討論

氣溫:德基水庫大覇爲 11.0 ~ 24 ℃, 平均在 18.5 ± 4.0 ℃; 字能爲 13.0 ~ 24 ℃, 平均 19.0 ± 3.3 ℃: 松茂爲 14 ~ 26 ℃, 平均 19.0 ± 3.4 ℃; 中興路口爲 11.8 ~ 23.0 ℃, 平均 17.7 ± 4.0°C; 平等爲 4~29.5°C, 平均 16.2 ± 7.3°C, 武陵爲 4.0~22.0°C, 平均 14.4±5.7 ℃。各站各次之氣溫見Table 1。

水溫:與氣溫一樣,隨採樣點海拔增高,水溫漸低,各站以溫如下:德基水庫大覇11.5~20℃,

- 平均 15.4 ± 2.7 °C; 宇能 $12.0 \sim 21$ °C, 平均 16.4 ± 2.9 °C; 松茂 $7.0 \sim 23$ °C, 平均 13.3 ± 4.3 °C; 中興路口 $7.5 \sim 17$ °C, 平均 12 ± 3.1 °C; 環山 $5.5 \sim 19$ °C, 平均 12.2 ± 3.7 C; 武陵 $4 \sim 16.0$ °C, 平均 10.8 ± 3.4 °C。各站各次之水溫見 Table 2。
- 溶氧量:各站溶氧量數次之平均,均在7.6ppm以上,以平等最高,為9.1 ± 1.8ppm,其次字能 為8.8 ± 1.4ppm,最低為松茂7.63 ± 2.32ppm。溶氧量與採樣地點有關因德基與松茂 是止水情形,所以此二站之溶氧量較其他站低,各站各月份溶氧量之情形見Table 3。
- p H 值:各站之 p H 值如下: 德基水庫大覇爲 8.0~9.0,平均 8.6 ± 0.3;字能爲 8.2~9.5, 平均在 8.9 ± 0.5;松茂爲 7.8~9.1,平均 8.4 ± 0.3;中與路口爲 8.0~8.6,平均 8.4 ± 0.2;平等爲 8.1~9.2,平均 8.4 ± 0.3;武陵爲 8.0~9.3,平均 8.4 ± 0.3 。整體而言 p H 皆在 7.8 以上;各月份各站之情形見 Table 4。
- 導電度:各站導電度如下: 德基水庫大覇為 175 ~ 330 µmhos/cm, 平均 214 ± 50 µmhos/cm; 宇能為 150 ~ 840 µmhos/cm, 平均 214 ± 43 µmhos/cm; 松茂為 170 ~ 560 µmhos/cm, 平均 292 ± 112 µmhos/cm; 中興路口為 195 ~ 410 µmhos/cm, 平均 289 ± 73 µmhos/cm; 平等為 180 ~ 520 µmhos/cm, 平均 253 ± 88 µmhos/cm; 武陵為 180 ~ 460 µmhos/cm, 平均 269 ± 88 µmhos/cm。以松茂最高,各站各月份情況見 Table 5。
- 糖硬度:各站之糖硬度如下: 德基水庫大顆為 70~440ppm,平均 141 ± 106ppm; 宇能為 72~288ppm,平均 132 ± 61ppm; 松茂為 106~340ppm,平均 155 ± 79ppm;中與路口為 106~240ppm,平均 143 ± 48ppm; 平等為 80~266ppm,平均 130 ± 49ppm; 武陵為 72~360ppm,平均 137 ± 78ppm。整年度而言各站以12月22日及 4.月27日之總硬度最高,各站各月份情況見 Table 6。
 - 鈣:各站之鈣濃度如下:德基水庫大關為 14.4~96ppm,平均 29.8 ± 22.6ppm; 字能為 14.4~64.0ppm, 平均 26.4 ± 14.6ppm; 松茂為 19.2~68.0ppm, 平均 31.9 ± 12.9ppm; 中興路口為 13.6~56.0ppm, 平均 29.0 ± 13.8ppm; 平等為 20.0 ± 31.2ppm, 平均 25.6 ± 4.4ppm; 武陵為 16.0~72.0ppm, 平均 27.4±13.4 ppm。 其中以 1986 年12月22日最高,各站各月份情况見 Table 7。
- 總鹼度:各站之總鹼度如下:德基水庫大關為 6.34 ~ 73.97 ppm, 平均 27.9 ± 26.2 ppm; 宇能為 5.28 ~ 65.57 ppm, 平均 23.3 ± 24.3 ppm; 松茂為 7.4 ~ 82.58 ppm, 平均 34.9 ± 32 ppm; 中興路口為 6.34 ~86.39 ppm, 平均 46.1 ± 34.4 ppm, 平等為 6.34 ~ 78.08 ppm, 平均 30.0 ± 28.7 ppm, 武陵為 6.34 ~ 88.79 ppm, 平均 32.2 ± 34.9 ppm。各站在 12月22日以前總驗度比12月22日以後高出很多。其他各站各月份之情况見 Table 8。
- 化學需氧量:各站化學需氧量如下:德基水庫大覇為 1.04~14.7 ppm,平均 2.65±3.46 ppm; 宇能為 0.80~12.8 ppm,平均 3.90±4.01 ppm; 松茂為 0.56~17.6 ppm,平均 4.92±6.24 ppm;中與路口為 0.16~11.2 ppm,平均 4.18±4.50 ppm;平等為 0.08~12.8 ppm,平均 2.99±4.06 ppm;武陵為 0.32~12.8 ppm,平均 3.08±3.49 ppm; 同樣地以松茂 4.92 ppm 為最高。其他各站各月份見 Table 9。
- 懸浮固體:各站懸浮固體如下:德基水庫大朝為 1.0~29.0ppm, 平均 25.6 ± 20.6ppm; 宇能為 7.0~65.0ppm, 平均 40.2 ± 22.0ppm; 松茂為 1.5~438.5ppm, 平均 103 ± 141 ppm; 中與路口 20~55.5ppm, 平均 28 ± 19.7ppm; 平等為 1.0~34.0ppm, 平均 13.6± 10.2ppm; 武陵為 1.0~60.0ppm, 平均 20.6 ± 19.6ppm。以松茂最高,全年中也以 10月22日到12月22日之松茂較高,其他各站各月份之情況見 Table 10。
- 獨 度:各站之濁度如下:德基水庫大覇爲ND~2.62N.T.U, 宇能爲ND~4.99N.T.U, 松茂爲ND

- ~ 38.85 N.T.U,中興路口 ND ~ 3.34 N.T.U,平等為 ND ~ 2.88 N.T.U,武陵為 ND ~ 4.46 N.T.U。以松茂之10.月22 日及11.月13.日最高,此時浮木最多,而其他站水有流動,濁度較低,其他各站各月份之情況見 Table 11。
- 氨氮 (Ammonia-N):各站之氨氮如下德基水庫大覇 ND ~ 166.4ppb , 宇能為 5.03 ~ 206.86 水 茂為 1.21 ~ 398.8ppb , 中興路口為 4.33 ~ 102.50ppb , 平等為 4.04 ~ 90.62ppb , 武陵 為 1.63 ~ 89.29 ppb; 其中以10.月22.日及11.月13.日為最高,高達 398ppb以上。其他各站各月份之情况見 Table 12。
- 亞硝酸氮 (NO₂-N):各站之亞硝酸氮濃度如下:德基水庫大覇為 0.97 ~ 5.80ppb ,字能為 1.61 ~ 7.10ppb ,松茂為 ND ~ 12.60ppb ,中興路口為 ND ~ 2.43ppb ,平均為 ND ~ 3.2ppb , 武陵 ND ~ 4.70ppb ,除了11月13日松茂高達 12.60ppb 外,各站亞硝酸氮相當低,各站各月份之情况見 Table 13。
- 硝酸氮(NO,-N): 各站之硝酸氮濃度如下: 德基水庫大覇 291.8 ~ 583.0ppb, 平均 394 ±73.7 ppb; 字能為 270.9 ~ 860.0ppb, 平均 457 ± 182ppb, 松茂為 278.0 ~ 990.0 ppb, 平均 526.6 ± 235.7ppb, 中與路口為 288.6 ~ 689.0ppb, 平均 434.8 ± 129ppb, 平等為 284.5 ~ 923.0ppb, 平均 466 ± 174ppb; 武陵為 212.0 ~ 1191.0ppb, 平均 586±306 ppb, 各站各月份之情況見 Table 14。
- 正磷酸磷 (PO_4^3 -P):各站之正磷酸濃度為:德基水庫大覇 1.10 \sim 54.33ppb ,宇能 1.45 \sim 33.24 ppb ,松茂爲1.76 \sim 374.15ppb ,中興路口爲 2.09 \sim 17.05ppb ,平等 2.42 \sim 26.54ppb ,武陵 2.09 \sim 95.42ppb ,其中以松茂11.月13.日最高,各站各月份情况見 Table 15 。
- 總儲(T-P):各站之總磷濃度如下:德基水庫大覇為 3.80~1181.2ppb,宇能 8.80~207.89 ppb,松茂為 10.10~531.69ppb,中興路口為 27.54~963.16ppb,環山為 9.50~118.42 ppb,武陵為 6.4~468.42 ppb。各站之總磷均比正磷酸磷高出許多,尤其是11.月 13.日、2月23日,表示有機磷之含量相當高。各站各月份之情況見Table 16。
- 硫化物:各站之硫化物濃度如下:德基水庫大網為ND~15.40ppb,宇能ND~15.7ppb,松茂為ND~12.40ppb,中興路口為ND~43.0ppb,環山為ND~15.20ppb,武陵為ND~18.6ppb。各站之月份之情况見Table 17。
- 砂 酸: 各站之砂酸濃度如下: 德基水庫大覇為ND~2.11ppm, 宇能為ND~2.30ppm, 松茂為ND~3.51ppm, 中興路口為ND~2.29ppm, 環山為ND~1.83ppm, 武陵為ND~17.7 ppm。各站各月份之情況見Table 18。
- 葉線素甲(Chlorophy II A):各站之葉線素甲如下:德基水庫大覇 ND~67.81mg/m³,字能 ND~62.34mg/m³,松茂 ND~147.97mg/m³,中興路口 ND~52.13mg/m³,環山 ND~242.11 mg/m³,武陵 ND~51.86mg/m³。其中以11月13日之環山與松茂最高。各站各月份之情况見 Table 19。

謝辭

本計劃為農委會補助計劃,計劃名稱「大甲溪上游浮游生物相及水質之調查」,計劃號碼「76 一農建一12.2 一林2416」,執行期間承中央研究院張崑雄博士,農委會林務科吳英陵博士之支 持與鼓勵。以及海洋學院水產養殖系林俊年及林勇助之協助,在此一併致謝。

参考文獻

- 1. 陳建初,1982, 水質分析,九大圖書公司,台北,台灣。
- 2 Franson, 1981, editor, Standard methods for the examination of water and waste water 15th edition. American public Health Association washington, D.C. U.S.A.

Table 1 Fluctuations of air temperature (°C) at the upstream of Ta Chia river from October 1986 to June 1987

Junua se	Date	St.1	St. 2	St.3	St.4	St.5	St.6
1234567890112314	86/16/02 86/16/22 86/11/13 86/12/03 86/12/22 87/01/13 87/02/06 87/02/23 37/03/21 87/04/07 87/04/27 87/05/19 87/06/09 87/06/26	19.5 20.5 24.0 15.8 11.8 16.0 20.0 21.0 16.0 18.5 19.8 21.5 24.0	22.0 22.0 18.8 13.0 14.0 15.5 18.5 24.0 19.5 17.5 20.5 19.0 22.1	20.0 26.0 22.0 14.5 18.0 14.0 18.0 17.0 16.0 20.0 18.5 20.2 23.0	23.0 18.0 19.5 16.1 12.5 11.8 15.5 21.5 21.0	17.0 23.0 29.5 13.5 6.0 4.0 6.0 13.0 16.5 17.0 18.5 17.2 23.5 22.5	9.0 9.2 8.0 11.5 -4.0 -1.0 11.0 9.0 19.0 21.0 22.0 19.0

ហ

Table 2 Fluctuations of water temperature (°C) at the upstream of Ta-Chia river from October 1986 to June 1987

<u> </u>	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	19.5		12.0	13.0	13.0	13.0
$\tilde{2}$	86/10/22	17.5	19.8	23.0	17.0	15.5	12.2
$\bar{3}$	86/11/13	18.0	18.0	18.0	14.8	13.5	12.0
4	86/12/03	16.3	16.5	16.3	12.3	12.2	12.0
5	86/12/22	11.5	12.0	9.5	7.5	8.0	7.0
6	87/01/13	12.2	12.8	7.0	8.9	5.5	4.0
7	87/02/06	12.5	13.5	8.0	8.5	7.0	6.0
8	87/02/23	13.0	14.0	12.0	13.0	11.0	10.0
9	87/03/21	13.5	13.5	11.0	13.0	10.5	10.5
10	87/04/07	14.0	17.0	14.0		12.0	13.0
11	87/04/27	15.0	17.5	13.0		13.0	13.5
12	87/05/19	15.8	18.5	14.0		13.0	14.0
$1\overline{3}$	87/06/09	17.0	18.5	15.5		17.0	16.0
14	87/06/26	20.0	21.0		AND AND SEE	19.0	8.3

Table 3 Fluctuations of dissolved oxygen (mg/L) at the upstream of Ta-Chia river from October 1986 to June 1987

	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	ورد بهور سد السم معرب		6.50	6.30	6.90	
2	86/10/22	7.68	9.08	5.92	10.92	7.84	8.80
3	86/11/13	8.34	9.00	2.17	10.67	9.50	9.34
4	86/12/03	7.67	8.00	6.34	9.00	8.67	8.50
5	86/12/22	6.59	7.42	9.42	9.75	9.42	9.25
6	87/01/13	7.92	8.18	9.60	9.43	11.27	10.02
7	87/02/06	6.53	7.37	9.96	9.03	9.96	8.62
8	87/02/23	9.20	10.38	9.96	9.96	12.21	10.29
9	87/03/21	5.68	6.46	6.42	5.21	5.62	5.41
10	87/04/07	6.25	8.45	6.21		6.80	5.85
1.1	87/04/27	7.75	10.35	7.85	_ ~ ~ ~ _	9.25	6.85
12	87/05/19	8.60	10.45	8.60		8.95	8.95
13	87/06/09	8.25	9.90	10.20		10.50	10.05
14	87/06/26	10.20	10.45		·	10.50	8.90

Table 4 Fluctuations of pH value at the upstream of Ta-Chia river from October 1986 to June 1987

and the second second second second second	Date	St.1	St.2	St.3	St.4	St.5	St.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	86/10/02 86/10/22 86/11/13 86/12/03 86/12/22 87/01/13 87/02/06 87/02/23 87/03/21 87/04/07 87/04/27 87/05/19 87/06/09 87/06/26	8.2 9.0 8.9 8.7 8.4 8.5 8.7 8.5 8.7 8.7 8.8	9.5 9.0 8.7 8.2 8.3 8.2 8.5 9.3 9.2 9.3 9.4 8.2	7.8 9.1 7.9 8.5 8.3 8.4 8.5 8.6 8.3 8.4	8.0 8.4 8.5 8.5 8.5 8.6 8.1	8.1 8.5 8.4 8.3 8.3 8.4 8.3 8.3 8.3 8.5 9.2 8.6 8.3	8.0 8.3 8.2 8.2 8.3 8.2 8.4 8.1 8.2 8.2 8.7 9.3 8.6 8.7

Table 5 Fluctuations of conductivity (umhos/cm) at the upstream of Ta Chia river from October 1986 to June 1987

	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	-	· · · · · · · · · · · · · · · · · · ·			- ,-,-	
$\dot{\tilde{2}}$	86/10/22	190	200	290	270	245	370
3	86/11/13	310	230	560	410	520	460
4	86/12/93	330	340	445	380	310	400
5	86/12/22	220	220	255	250	240	260
$\ddot{6}$	87/01/13	195	150	245	195	260	230
7	87/02/06	200	220	275	290	250	230
8	87/02/23	205	210	360	285	255	285
9	87/03/21	$\frac{1}{210}$	210	230	230	220	220
10	87/04/07	200	210	240		220	260
11	87/04/27	185	190	240		210	210
12	87/05/19	160	210	170	<u></u>	180	200
13	87/06/09	175	205	190		185	180
14	87/06/26	200	190		· · ·	190	190
.aa.	TO TO TOWN DECEMBER						به کرد: داده سین سند منگ نسب بی

Table 6 Fluctuations of total hardness (ppm) at the upstream of Ta-Chia river from October 1986 to June 1987

Destro	St.1	St.2	St.3	St.4	St.5	St.6
Date 1 86/10/02 2 86/10/22 3 86/11/13 4 86/12/03 5 86/12/22 6 87/01/13 7 87/02/06 8 87/02/23 9 87/03/21 10 87/04/07 11 87/04/27 12 87/05/19 13 87/06/09 14 87/06/26	70 97 118 240 440 100 88 100 82 86 280 84 100 80	85 100 200 200 126 94 102 108 112 288 106 124 72	114 110 124 340 200 120 118 106 122 128 310 108 114	106 115 122 200 240 118 110 164 116	108 101 132 180 180 92 98 120 128 132 266 102 100 80	108 100 122 180 360 100 92 124 112 116 216 116 82

Table 7 Fluctuations of calcium (ppm) at the upstream of Ta-Chia river from October 1986 to June 1987

	Desta	St.1	St. 2	St.3	St.4	St.5	St.6
1 2 3 4 5 6 7 8 9 10 11	Date 86/10/02 86/10/22 86/11/13 86/12/03 86/12/22 -87/01/13 87/02/06 87/02/23 87/03/21 87/04/07 87/04/27	St.1 18.0 23.0 24.0 64.0 96.0 18.0 18.0 22.0 14.4 21.0 28.8 20.8	21.0 20.8 52.0 64.0 22.4 18.4 22.4 16.8 20.8 22.4	31.0 28.0 28.0 28.0 68.0 48.0 24.8 22.4 30.4 19.2 30.4 35.2 24.8	27.0 26.0 24.8 48.0 56.0 20.0 20.0 25.6 13.6	22.0 31.0 30.4 28.0 24.0 20.0 20.0 30.4 23.2 30.4 31.2 22.4	29.0 24.0 25.4 26.0 72.0 20.8 20.0 27.2 19.2 27.2 30.1 23.2
12 14	87/05/19 87/06/09 87/06/26	22.4 14.8	27.2 14.4	24.8	and the second	23.2 21.6	24.0 16.0

Table 8 Fluctuations of alkalinity (ppm) at the upstream of Ta-Chia river from October 1986 to June 1987

	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	42.54		69.57	67.57	61.06	59.06
2	86/10/22	69.57	37.04	82.58	64.56	61.06	66.57
3	86/11/13	73.97	61.31	71.87	80.33	67.67	80.33
4	86/12/93	57.06	65.57	76.08	74.07	78.08	86.59
5	86/12/22	59.21	63.41	67.67	86.69	65.52	88.79
6	87/91/13	14.81	11.61	9.51	10.56	13.76	9.51
7	87/02/06	8.40	8.50	11.60	12.68	12.68	8.50
8	87/02/23	11.63	10.57	13.94	12.68	12.68	8.46
9	87/03/21	10.60	5.28	7.40	6.34	6.34	6.34
10 10	87/04/07	10.34	7.40	8.36	بحب عبد بيد	6.88	6.34
11	87/04/27	7.40	7.40	10.57		7.40	5.30
	87/05/19	5.29	6.34	14.80		8.46	6.34
12	87/06/09	13.70	10.60	10.60		10.60	10.60
13 14	87/06/26	6.34	7.40			8.50	8.00

Table 9 Fluctuations of COD. (ppm) at the upstream of Ta-Chia river from October 1986 to June 1987

محمد طارا بند الحج ويستدن اليام ويستد <u>مستد</u>	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	1.44	المحال المهار ومن	1.60	1.12	0.64	
2	86/10/22	1.92	3.36	13.76	2.56	0.96	2.08
$\tilde{3}$	86/11/13	9.60	12.80	17.60	11.20	11.20	8.00
4	86/12/03	14.47	12.80	16.00	11.20	12.80	12.80
5	86/12/22	3.04	0.80	0.56			1.76
6	87/01/13	2.40	2.64	1.20	0.16	0.08	0.32
7	87/02/06	2.50	2.80	2.60	4.30	2.60	3.00
8	87/02/23	1.44	$\overline{1.52}$	1.84	1.52	1.68	1.36
9	87/93/21	1.22	1.86	1.72	1.34	1.38	1.02
10	87/04/07	2.04	2.58	1.80		1.96	2.73
11	87/04/27	2.16	2.96	1.84		2.00	2.88
$\frac{11}{12}$	87/05/19	1.12	1.84	1.76		1.36	1.04
$\frac{12}{13}$	87/06/09	1.04	2.72	1.82	part have part with	1.20	1.80
14	87/06/26	1.12	2.08		· · · · · · · · · · · · · · · · · · ·	1.04	1.20
1,4t	017 007 20	3. ◆ 3. €					

Table 10 Fluctuations of suspended solid (SS, ppm) at the upstream of Ta-Chia river from October 1986 to June 1987

	Date	St.1	St.2	St.3	St.4	St.5	St.6
1 2 3 4 5 6 7 8 9	36/10/02 86/10/22 86/11/13 86/12/03 86/12/22 87/01/13 87/02/06 87/02/23 87/03/21 87/04/07	24.0 22.0 1.5 54.0 78.0 21.5 22.5 1.0 28.0 24.0	65.0 9.5 21.0 79.5 47.0 52.5 55.0 32.0 31.0	63.0 295.0 200.5 221.0 438.5 17.5 51.5 1.5 12.0 10.0	26.0 21.0 2.0 48.0 55.5 22.5 52.5 5.5 19.0	11.0 13.0 4.5 28.0 19.5 11.5 34.0 1.0 23.0 20.0 6.0	21.0 23.0 4.5 60.0 51.0 11.5 30.0 1.0 14.0 4.0
1 2 .	87/04/27 87/05/19 87/06/09	7.0 29.0 19.5	7.0 35.0 26.5	2.0 20.0 7.0		2.0 2.5	6.0 2.5
3 4	87/06/26	26.0	61.5		nu yan upo tova	14.5	48.5

Table II fluctuations of turbidity (NTU) at the upstream of Ta-Chia river from October 1986 to June 1987

	politikanin 1884 kalinga (k. 1912). Na kalinga kalinga kalinga kalinga kalinga kalinga kalinga kalinga kalinga	e de la companya della companya della companya de la companya della companya dell			C 1. A	C+ 5	St.6
	Date	St.1	St. 2	St.3	St.4	St.5	26.0
****	86/10/02	and the same	Mark Mark Art Mark	page serve for APP		and the second states of	
$\frac{1}{2}$	86/19/22	2.62	4,99	38.85	0.24	N.D.	0.64
3	86/11/13	N.D.	0.51	32.72	3.34	2.35	4.46
4.	86/12/93	0.97	3.34	7.56	N. D.	2.88	3.01
5	86/12/22	N.D.	N. D.	0.38	0.70	N.D.	1.30
6	87/01/13	N.D.	N.D.	N.D.	N.D.	0.11	N.D.
7	87/02/06	N.D.	1.17	N.D.	N.D.	N.D.	N.D.
8	87/02/03	N.D.	1.17	N.D.	N.D.	1.82	N.D.
. Ο Ω	87/03/21	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.
	87/04/07	N.D.	2.14	N.D.		1.61	N.D.
10	87/04/27	0.26	1.27	N.D.		N.D.	N.D.
		0.20 0.31	1.46	N.D.		N.D.	N.D.
12	87/05/19		1.02	N.D.		N.D.	N.D.
13	87/06/39	N.D.	N.D.	11+1/+		N.D.	N.D.
1.4	87/06/26	N.D.	. j¥+IJ+	· ·		1,000	

Table 12 Fluctuations of ammonia-N (ppb) at the upstream of Ta-Chia river from October 1986 to June 1987

10/02 40.1 10/22 16.1 11/13 37.1 12/03 32.1 12/22 14.4 01/13 13.1	37 40.44 74 21.26 18 33.85 40 30.96 11 33.66	398.82 53.48 24.40 11.07	102.50 24.70 1.44 31.26 29.00 10.70	11.80 20.31 45.14 25.33 25.70 4.04	15.50 19.14 71.07 33.66 8.85 8.48
10/22 16.3 11/13 37.3 12/03 32.3 12/22 14.4	37 40.44 74 21.26 18 33.85 40 30.96 11 33.66	398.82 53.48 24.40 11.07	1.44 31.26 29.00	45.14 25.33 25.70	71.07 33.66 8.85
11/13 37.1 12/03 32.1 12/22 14.4	74 21.26 18 33.85 40 30.96 11 33.66	398.82 53.48 24.40 11.07	31.26 29.00	25.33 25.70	33.66 8.85
12/03 32.1 12/22 14.4	18 33.85 40 30.96 11 33.66	53.48 24.40 11.07	29.00	25.70	8.85
12/22 14.	40 30.96 11 33.66	24.40 11.07		 - ·	
·	33.66	11.07	10.70	4.04	8.48
OTATO TOO.					
02/06 166.4	49 206.86	119.90	45.59	90.62	89.29
02/23 N.I	- -	· · · · · · · · · · · · · · · · · · ·	4.33	7.83	6.61
V = -			27.22	20.98	21.19
O4.77 =				11.20	1.63
_ ·			. And the same of the same	7.40	7.40
V/ I/		·		3.04	2.45
				25.80	21.30
	· · · · · · · · · · · · · · · · · · ·		مين مين مين مين مين	33.70	35.90
	03/21 19. 04/07 6. 04/27 7. 05/19 5. 06/09 15.	03/21 19.50 20.77 04/07 6.62 25.14 04/27 7.40 7.46 05/19 5.98 3.54 06/09 15.70 152.66	03/21 19.50 20.77 31.80 04/07 6.62 25.14 1.21 04/27 7.40 7.40 10.57 05/19 5.98 3.54 3.12 06/09 15.70 152.60 40.60	03/21 19.50 20.77 31.80 27.22 04/07 6.62 25.14 1.21 04/27 7.40 7.40 10.57 05/19 5.98 3.54 3.12 06/09 15.70 152.60 40.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 13 Fluctuations of nitrite N (ppb) at the upstream of Ta-Chia river from October 1986 to June 1987

	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	1.43	· 	2.81	1.32	1.38	1.14
$\overline{2}$	86/10/22	5.80	2.90	6.20	2.00	0.80	1.14
$\bar{3}$	86/11/13	1.61	1.61	12.60	1.66	3.20	2.10
4	86/12/03	1.55	1.96	5.10	0.96	1.49	2.89
5	86/12/22	1.78	2.14	N.D.	N.D.	N.D.	N.D.
6	87/01/13	0.97	2.72	0.97	2.31	0.67	1.32
7	87/02/06	4.80	3.40	4.60	1.90	2.20	1.50
8	87/02/23	1.32	2.14	0.50	1.84	0.73	0.85
9	87/03/21	1.80	3.89	1.78	2.43	1.96	2.25
10	87/04/07	1.73	2.79	1.24		0.78	1.22
11	87/04/27	3.07	4.12	1.02		1.20	1.84
12	87/05/19	3.01	6.64	3.19		2.31	1.84
13	87/06/09	3.60	7.10	1.60		3.10	4.78
14	87/06/26	2.43	3.48			2.60	4.30

Table 14 Fluctuations of nitrate-N (ppb) at the upstream of Ta-Chia river from October 1986 to June 1987

e o o o o o o o o o o o o o o o o o o o	Date'	St.1	St.2	St.3	St.4	St.5	St.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	86/10/02 86/10/22 86/11/13 86/12/03 86/12/22 87/01/13 87/02/06 87/02/23 87/03/21 87/04/07 87/04/27 87/05/19 87/06/09 87/06/26	583.0 373.0 476.0 385.0 346.0 409.0 346.0 291.8 365.3 410.9 410.0 408.1 320.0	456.0 346.0 401.0 452.0 262.0 361.0 318.0 345.4 270.9 600.3 860.0 743.2 525.1	990.0 848.0 563.0 405.0 393.0 278.0 357.0 689.0 340.6 386.8 833.0 440.0 321.4	689.0 539.0 456.0 361.0 322.0 421.0 401.0 288.6	923.0 551.0 516.0 460.0 440.0 357.0 318.0 284.5 309.5 659.5 341.0 441.3 458.1	907.0 828.0 1191.0 681.0 591.0 397.0 476.0 166.9 278.1 797.5 212.0 343.6 753.9

Table 15 Fluctuations of orthophosphate-P (ppb) at the upstream of TarChia river from October 1986 to June 1987

St.6	St.5	St.4	St.3	St. 2	St.1	Date	
95.42	24.19	17.50	50.98	المنافقة بساني	54.33	00/30/40	4
8.50	4.80	7.50	169.50	8.10	21.50	86/10/02	1
61.03	17.50	14.15	374.15	14.15	20.85	86/10/22	2
77.77	14.15	17.50	157.80	14.15		86/11/13	3
10.80	17.50	10.80	7.45	10.80	14.15	86/12/03	4
30.22	26.54	13.14	33.91		17.50	86/12/22	5
2.09	2.42	2.09	1.76	11.13	14.15	87/01/13	()
8.79	5.78	5.44	4.44	2.42	2.76	87/02/06	1
3.09	4.77	4.10	. =	6.78 5.78	5.11	87/02/23	3
52.65	24.19	4.10	2.76	5.78	9.50	87/03/21	9
10.50	9.10		15.49	33.24	14.50	87/04/07	Ø
6.11			8.50	10.50	14.10	87/04/27	1
	24.53		65.05	1.45	8.46	87/05/19	C) L:
2.80	4.40	and the second s	6.40	6.80	1.10	87/06/09	5 (7
2.43	3.80	المراجعة المساجعة الم		11.50	4.40	87/06/26	4

Table 16 Fluctuations of total phosphate-P (ppb) at the upstream of Ta-Chia river from October 1986 to June 1987

mana, menderamping best in the specific manager	Date	St.1	St.2	St. 3	St.4	St.5	St.6
1	86/10/02				مواد منا منا منا		
$\frac{1}{2}$	86/10/22	24.30	65.79	243.14	50.00	76.32	468.42
3	86/11/13	1181.20	57.89	531.69	963.16	118.42	176.32
$\frac{3}{4}$	86/12/03	54.06	63.16	391.47	134.21	73.68	165.39
5	86/12/22	51.36	207.89	44.74	86.84	92.11	39.47
6	87/01/13	154.10	78.95	50.00	68.42	81.58	55.26
7	87/02/06	56.76	60.52	42.11	65.79	47.37	60.53
8	87/02/23	321.66	171.05	68.42	52.63	55.26	50.00
$\tilde{9}$	87/03/21	19.20	36.58	16.16	27.54	39.59	25.87
10	87/04/07	37.30	68.39	30.56		43.62	78.78
11	87/04/27	21.50	47.60	22.90		31.60	42.60
12	87/05/19	28.55	21.52	72.75		53.99	31.90
1.3	87/06/09	3.80	8.80	10.10		9.50	6.40
1.5	87/06/26	21.20	21.85	and the second of the		13.50	13.81

Table 17 Fluctuations of sulfide (ppb) at the upstream of Ta-Chia river from October 1986 to June 1987

and an experience of the contract of the contr	Date	St.1	St.2	St.3	St.4	St.5	St.6
1	86/10/02	8.50	ide made than	9.50	8.50	7.60	7.20
$\hat{2}$	86/10/22	4.30	15.70	10.50	43.00	7.60	6.30
3	86/11/13	4.90	7.20	11.45	7.90	15.20	18.60
4	86/12/03	15.40	4.00	5.30	21.50	4.30	0.40
5	86/12/22	13.40	12.70	11.70	11.70	11.70	11.70
$\ddot{6}$	87/91/13	12.16	7.03	8.57	5.49	7.54	17.70
7	87/02/06	3.51	1.81	N. D.	2.24	1.38	1.38
8	87/02/23	0.96	3.51	1.81	2.66	2.24	0.96
9	87/03/21	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.
10	87/04/07	1.10	N.D.	N.D.		N.D.	N.D.
11	87/04/27	N.D.	N.D.	N.D.		N.D.	N.D.
$\frac{1}{12}$	87/05/19	N.D.	N.D.	12.40		N.D.	N.D.
13	87/06/09	N.D.	N.D.	N.D.		N.D.	N.D.
14	87/06/26	N.D.	N.D.			N.D.	N.D.

21

Table 18 Fluctuation of silica (pp**m**) at the upstream of Ta-Chia river from October 1986 to June 1987

eth annange ann i sea an air an 112 dt	Date	St.1	St.2	St.3	St.4	St.5	St.6
	00.00.00	0.35	,	0.41	0.61	1.22	0.47
1	86/10/02		N. D.	N.D.	N.D.	N.D.	0.35
2	86/10/22	N.D.	9.23	3.51	0.30	1.57	N.D.
3	86/11/13	0.60	0.52	0.24	2.29	0.43	0.83
4	86/12/03	0.39	2.30	2.19	1.35	0.43	1.77
5	86/12/22	1.67	- -	0.77	0.77	0.69	0.67
6	87/01/13	0.75	0.72	0. 79	1.26	1.03	0.41
7	87/02/06	0.12	9.54	0.75	0.23	0.23	0.26
8	87/02/23	0.35	0.34		0.32	0.34	0.03
${\mathfrak Q}$	87/03/21	0.48	0.51	0.38	0.00	0.77	0.75
19	87/04/07	0.56	0.83	0.69		1.32	0.41
11	87/04/27	2.11	2.05	1.96	— — —	0.91	0.03
$\frac{1}{12}$	87/05/19	0.10	0.36	0.40			1.35
13	87/06/09	1.83	2.04	2.41	man and the total	1.83	1.08
14	87/96/26	1.75	1.45			1.75	1.00

Table 19 Fluctuations of chlorophyll a (mg/m³) at the upstream of Ta-Chia river from October 1986 to June 1987

e e e e e e e e e e e e e e e e e e e	Date	St. 1	St.2	St.3	St.4	St.5	St.6
79	86/10/02	سرت جد و	and the special and special sp		and the state of t		
$\hat{2}$	86/10/22	57.18	54.32	98.72	52.13	50.11	29.81
5	86/11/13	67.99	59.38	147.97	47.97	242.11	51.86
\tilde{A}	86/12/03	50,86	51.37	141.62	29.68	14.42	20.92
5	86/12/22	67.81	62.34	112.36	47.58	20.84	21.33
$\ddot{6}$	87/01/13	5.70	4.10	14.10	N.D.	9.60	N.D.
7	87/02/06	N.D.	1.00	N.D.	N.D.	N.D.	N.D.
8	87/92/23	N.D.	21.20	3.00	3.50	N.D.	N.D.
9	87/03/21	N.D.	9.62	10.96	1.89	2.32	0.05
10	87/04/07	N.D.	0.56	1.00		N.D.	0.96
1.1	87/04/27	N.D.	N.D.	12.27		3.98	N.D.
12	87/05/19	N.D.	1.15	N.D.		10.56	N.D.
15	87/06/09	N.D.	N.D.	N.D.		70.16	8.37
14	87/06/26	6.49	7.23	and the same of the same		52.64	10.51

ಬ

大甲溪上游浮游生物及水質之調查

(浮游生物相部分)

雷 祺 祥 陳昭寬

中央研究院 動物研究所

摘 要

於75年10月21日至76年6月26日每三星期一次從大甲溪上游之德基大壩、宇能、松茂、中興路口、平等及武陵等6採樣站採取浮游生物樣品,分析其種類組成、豐度與族群構造;並且利用相關分析法分析浮游生物豐度與環境因子間之關係。於全調查期由6採樣站共發現24種(21屬)之植物性浮游生物(黃色藻植物門15種,綠藻植物門8種及褐色鞭毛藻植物門1種)。各站所出現之植物性浮游生物大多屬優養化水域種,而其總種類數之大小依序爲松茂(21種)>德基大壩(20種)>字能(19種)>中興路口(17種)>平等(15種)>武陵(14種)。各站各次採到之植物性浮游生物種類大致上以黃色藻植物門爲最多;其量大致上,在德基大壩與字能兩站以綠藻植物門佔優勢,而在其他站則以黃色藻植物門佔優勢。各站植物性浮游生物之總豐度(No/L)平均以字能站者(116,295)最高,平等站者(29,985)最低;其種歧異度指數介於0.43與3.13之間,各站全調查期之平均值則介於1.51與2.59之間。

於全調查期由6採樣站共發現54種(38屬)之動物性浮游生物(輪虫動物38種,原生動物10種及甲殼類動物6種)。各站所出現動物性浮游生物總種類數之大小依序爲宇能(38種)>松茂(33種)>德基大壩(31種)>平等(18種)>中興路口(15種)>武陵(13種)。德基大壩、宇能及松茂等三站各次所採得之動物性浮游生物種類平均以輪虫動物爲最多,而中興路口、平等及武陵等三站則以原生動物爲最多。又各站各次所採得動物性浮游生物之量,平均以原生動物所佔之比例爲最高;而原生動物中則平均以Peridinium sp. 佔最優勢。各站動物性浮游生物之總豐度,平均以松茂站者(455,039)最高,平等站者(64)最低;其種歧異度指數介於0與1.76之間,各站全調查期之平均值則介於0.49與0.92之間。

ABSTRACT

Water samples were collected once every three weeks from 6 stations (Te-Chi, Yu-Non, Sung-Mou, Chung-Hsing, Ping-Teng and Wu-ling) in the upper Ta-Chia River, and the plankton communities and associated water quality parameters were investigated. The ranges of water quality parameters for the study period were: water temperature, 4-20.0°C; dissolved oxygen, 2.17-12.21 ppm; pH, 7.8-9.5; conductivity, 150-560 µmhos/cm; total hardness, 70-440 ppm; calcium, 13.6-96.0 ppm; alkalinity, 5.28-88.79 ppm; COD, 0.08-17.60 ppm; suspended solids, 1.0-438.0 ppm; turbidity, ND (non-detectable)-38.85 NTU; ammonia-N, ND-0.399 ppm; nitrite-N, ND-0.013 ppm; nitrate-N, 0.167-1.191 ppm; orthophosphate-P, 0.001-0.374 ppm; total phosphorus, 0.004-1.181 ppm; sulfide, ND-0.043 ppm; silica, ND-3.51 ppm; Chl. a, ND-242.11 mg/m³.

Twenty-four species (21 genera) of phytoplankton (Chlorophyta, 8; Chrysophyta, 15; Cryptophyta, 1) and 54 species (38 genera) of zooplankton (Protozoa, 10; Rotifera, 38; Crustacea, 6) were recorded from the upper Ta-Chia River. In terms of abundance (No./L) phytoplankton communities were generally dominated by Chlorophyta at Te-Chi and Yu-Non stations, and by Chrysophyta at three other stations. The mean total abundance of phytoplankton over the study period was highest at Yu-Non station (116,295) and lowest at Ping-Teng station (29,985). The phytoplankton assemblages of the upper Ta-Chia River were characteristic of the algal associations

of eutrophic, alkaline waters. The zooplankton communities at all stations were generally dominated by Protozoa (*Peridinium* sp.), and the mean total abunbance of zooplankton over the study period was highest at Sung-Mou station (455,039) and lowest at Ping-Teng station (64). The meam species diversity of phytoplankton and zooplankton for each station ranged from 1.51 to 2.59 and from 0.49 to 0.92 respectively.

Phytoplankton abundance was positively correlated with water temperature, pH, turbidity and nitrite-N. Zooplonkton abundance was positively correlated with phytoplankton abundance, water temperature, conductivity, alkalinity, COD, suspended solids, turbidity, ammonia-N, nitrite-N, orthophosphate-P, total phosphorus, silica and chl. a, and was negatively correlated with dissolved oxygen.

前言

大甲溪上游水域向為櫻花鈎吻鮭之棲息地;惟近年來由於兩岸山坡地之開墾,破壞水土保持,再加果園農場所使用之大量無機和有機肥料被雨水冲刷入溪流,使溪水中之植物營養鹽增加而造成優養化,以及大量農藥流入水中而改變生物相與破壞棲息環境,導致櫻花鈎吻鮭類臨絕跡。 政府有鑑於此,特將櫻花鈎吻鮭列爲自然文化資產之一,並着手進行其生態調查及復育工作。爲了瞭解大甲溪上游櫻花鈎吻鮭之棲息環境,乃以自武陵至德基水庫大壩間之大甲溪爲調查區域,選擇6個採樣點配合水質調查定期採樣以分析浮游生物相;期能獲得有關大甲溪上游水域之浮游生物相(種類組成和族群現存量),其時空變化及與水質變化關係之基本資料,以供評估該水域優養化程度及生態保育之參考。

材料與方法

¬採様方法

自民國 75 年 10 月至 76 年 6 月, 每隔 2 星期前往大甲溪上游之德基水庫大壩 (Te-Chi, St.

- 1),字能(Yu-Non,St.2),松茂(Sung-Mou,St.3),中興路口(Chung-Hsing,St.
- 4),平等(Ping-Teng, St.5)及武陵(Wu-Ling, St.6)等6個採樣站(Figs. $1\sim16$) 探樣一次。除了中興路口及松茂兩站因坍方分別共採8及12次外,其餘4站皆分別共採13次。
- 1. 動物性浮游生物之採集

利用塑膠製採水器自採樣點採取 30 公升之水倒入網目為 55 m 之浮游生物採集網加以濃縮;再把濃縮之動物性浮游生物倒入預裝 10 m ℓ 商業用福馬林液之 100 m ℓ 容量塑膠瓶中,加水稀釋成 100 m ℓ。

2.植物性浮游生物之採集

利用量简自採樣點採取原水倒入預裝 $2.5\,\mathrm{m}\ell$ Lugol's solution 之 $250\,\mathrm{m}\ell$ 容量塑膠瓶中,使水量剛好為 $250\,\mathrm{m}\ell$ 。

二分析方法

1. 動物性浮游生物

依標本瓶中動物性浮游生物量之多寡,把整瓶之標本液稀釋或濃縮;經充分混合後,每次取1m/之次樣品(subsample)注入Sedgwick-Rafter counting cell中;再把此計數盤置於100 x 放大倍率之顯微鏡下加以鑑定種類及計數其個體數。每一標本瓶先後共取3個1m/之次樣品分別加以分析,以求得1m/次樣品中所含各種動物之平均個體數;再利用下式換算成每一

公升原水中所含各種動物之個體數:

$$No/L = (\frac{A \times B}{30000}) \times 1000$$

式中之A為每1mℓ次樣品中各種動物之平均個數體數;B為經稀釋或濃縮後之樣品量(mℓ)。 2.植物性浮游生物

將標本瓶中之植物性浮游生物標本液充分混合後,以量簡量取 70 ml 倒入 100 ml 之離心管中,於 5000 rpm之速度離心 3 分鐘。離心後用吸管小心抽掉上層之澄清液,使濃縮成 10 ml 之量。再把此 10 ml 之濃縮液充分混合倒入 15 ml 之離心管中,於 5000 rp m 之速度離心 3 分鐘;離心後用吸管小心抽掉上層之澄清液,使濃縮成 1 ml 之量。從此 1 ml 之濃縮液利用吸管吸取一滴(=1/37 ml)置於載玻片,蓋上蓋玻上(22 %);再把此載玻片置於 200 x 放大倍率之顯微鏡下觀察,以鑑定種類及計數各種類之個體數(群體性之植物性浮游生物如 Melosira,之每一群體算做一個體)。由每瓶之濃縮標本液先後共吸取 3 滴,分別加以觀察分析,以求得 1/37 ml 濃縮液中所含各種植物性浮游生物之個體數:

No/L=
$$(A \div \frac{1}{37}) \div 70 \times 250 \times 4$$

= $(A \times 37 \div 70) \times 250 \times 4$
= $(A \times 37000) \div 70$

式中之A為1/37 m ℓ 濃縮液中所含各種植物性浮游生物之平均個體數。

3. 種歧異度 (species diversity)

各採樣站各次採得之動、植物性浮游生物之種歧異度利用下列之歧異度指數 (diversity index; Shannon and Weaver, 1949) 公式加以估算:

$$DI = -\sum_{i=1}^{S} P_{i} \log_{2} P_{i}$$

式中之 $P_i = N_i / N$; N_i 為一樣品中第i 種之個體數; N 為一樣品中之總個體數; S 為一樣品中之種類數。歧異度指數同時考慮一群落中各生物種之個體數,以及其在種間分配之情形,是表示個體在一群落的種類間分佈情形之一量度。

4.群落相似度 (community similarity)

各採樣站間動、植物性浮游生物群落之相似度利用下列之Sorensen coefficient of community similarity公式(Brower and Zar, 1977)分別加以估算:

$$C C_s = \frac{2 C}{S_1 + S_2}$$

式中之S₁及S₂分別為樣品1及樣品2中之種類數,C為兩樣品中之共同種類數。此值介於0 與1.0之間,如果兩樣品中無共同種類,則此值為0,表示此兩樣品間之群落完全不同;如果 兩樣品中之所有種類皆為共同種,則此值為1.0,表示兩樣品間之群落完全相同。

結 果

二植物性浮游生物

1. 種類組成及群落特性

於調查期間(75年10月21日至76年6月26日)由6個採樣站共採到24種(21屬)植物性浮游生物,分屬於綠藻植物門(Chlorophyta),黃色藻植物門(Chrysophyta)及褐色鞭毛藻植物門(Cryptophyta)(Plates 1~3);其中以Chrysophyta之15種(14屬)爲

最多,Chlorophyta 之8種(6屬)其次,而以Cryptophyta 之1種爲最少(Tables $1\sim7$)。

在調查期間由各站所採得之轉種類數分別為:德基大壩 20 種(包括綠藻植物門7種,黃色藻植物門12 種及褐色鞭毛藻植物門1種); 字能站 19 種(包括綠藻植物門7種,黃色藻植物門11 種及褐色鞭毛藻植物門1種); 松茂站 21 種(綠藻植物門5種,黃色藻植物門15種及褐色鞭毛藻植物門1種;中興路口站17種(綠藻植物門3種及黃色藻植物門14種); 平等站15種(綠藻植物門3種及黃色藻植物門12種); 武陵站14種(綠藻植物門2種及黃色藻植物門2種及黃色藻植物門12種)。由6採樣站所採得之24種中有9種(包括綠藻植物門之Actinastrum hantzschi,以及黃色藻植物門之Achnanthes sp.、Cocconeis sp.、Cymbella sp.、Eunotia sp.、Melosira sp.、Navicula sp.、Nitzschia sp.與Synedra acus)是6站間之共同種,1種Tetraedron minimum是德基大壩站之獨有種,其他的則為2至5站間之共同種(Table 7)。

各站各次所採到之植物性浮游生物種類數(Fig 17, Appendix 1)分別爲:德基大壩 4~14(平均±SD,8.2±2.8;n=13),字能 4~14(平均,10.1±2.9;n=13),松茂 8~13(平均,10.6±1.3;n=12),中興路口 8~13(平均,10.3±1.3;n=8),平等 6~13(平均。8.5±2.3;n=13)及武陵 6~13(平均,8.9±2.2;n=13);各站於全調查期所採到平均種類數之大小,依序爲松茂>中興路口>字能>武陵>平等>德基大壩。又各站每次所採到之植物性浮游生物種類數平均以 Chrysophyta爲最多。若以全調查期之平均豐度(abundance,No、L)及相對豐度(relative abundance,%)來看,德基大壩與字能兩站以 Chlorophyta 佔優勢,而其他 4 站則以 Chrysophyta 佔優勢;至於各站所採到之 Cryptomonas 量非常少(Figs. 18,19 及 Appendixes 3,4)。

2. 豐度

各採樣站各次所採得植物性浮游生物之總豐度(total abundance, No./L)呈明顯之時 (temporal)空(spatial)變化(Fig. 18, Appendix 3),其變化範圍分別爲:德基 大壩 8,986 \sim 245,785 (平均,86956.4 \pm 69227.9; n = 13),宇能 17,972 \sim 276,971 (平均,116294.7 ± 66108.0; n = 13), 松茂 5,285~296,000(平均, 68353.0±76009.0 ; n=12),中與路口 9,162 ~ 86,685 (平均, 30437.0 ± 25727.5 ; n=8),平等 3,524 ~80,519 (平均, 29985.1 ± 25703.6; n = 13)及武陵 8,281~161,743 (平均,65309.9 ± 63390.9; n=13); 各站全調查期之平均大小依序爲字能>德基大壩>松茂>武陵>中與 路口>平等。德基大壩站之植物性浮游生物豐度之最高點發生於76年4月27日,最低點則於 75年11月12日。宇能站之植物性浮游生物豐度之最高點發生於76年2月23日,最低點則於 75年12月2日。松茂站之植物性浮游生物豐度之最高點發生於75年10月21日,最低點則於 76年4月6日;其植物性浮游生物量自75年10月21日至76年2月23日隨時間遞減,而於 4月6日降至最低點;往後則又隨水溫之上昇而漸增。中興路口站於76年3月20日後,由於 坍方無法採樣, 全調查期只採樣 8 次; 其植物性浮游生物豐度之最高點發生於 75 年 11 月 12日 ,最低點則於 12月 2日。平等站植物性浮游生物豐度之最高點發生於 76年 6月 7日·最低點則 於 75 年 12 月 22 日。武陵站植物性浮游生物之豐度不呈規則性之季節變化,其最高點發生於76 年 2 月 23 日,最低點則於 76 年 10 月 21 日。

3. 種歧異度

各採樣站植物性浮游生物之種歧異度以歧異度指數(diversity index)表示,也呈明顯之時空變化(Fig. 20, Appendix 1),其變化範圍分別為:德基大壩 $0.85\sim2.19$ (平均

, 1.51 ± 0.43 ; n=13),字能 $0.63\sim2.79$ (平均, 1.84 ± 0.64 ; n=13),松 茂 $1.36\sim3.01$ (平均, 2.43 ± 0.52 ; n=12),中與路口 $1.79\sim3.13$ (平均, 2.59 ± 0.43 ; n=8),平等 $0.43\sim2.98$ (平均, 2.06 ± 0.76 ; n=13)及武陵 $0.86\sim2.94$ (平均, 2.08 ± 0.62 ; n=13)。全調查期各站平均歧異度之大小依序爲中興路口>松茂>武陵> 平等>字能>德基大壩。各採樣站種歧異度之時間變化,並無規則可尋。

4.各站間群落相似度之比較

利用全調查期各站植物性浮游生物種類之出現與否,分別計算各站間群落相似度之結果, 顯示各站間之群落相似度頗高(大於 0.65),且越鄰近之站間,其群落越相似(Table 8)。 5.植物性浮游生物量與環境因子間之關係

利用相關分析法 (correlation analysis) 分析所有站所有採樣時間之植物性浮游生物豐度與環境因子間之關係,結果顯示植物性浮游生物豐度與水溫、pH、濁度及亞硝酸態氮呈顯著正相關 (Table 17)。若把各站所有採樣時間之資料加以平均再分析各站植物性浮游生物豐度與環境因子間之關係,結果則顯示只與 pH 呈顯著正相關 (Table 18)。若把各採樣時間所有站之資料加以平均,再分析各採樣時間植物性浮游生物豐度與環境因子間之關係,結果則顯示植物性浮游生物豐度與東環境因子間之關係,結果則顯示植物性浮游生物豐度與 pH 呈顯著正相關,而與 懸浮性 固 形物呈顯著負相關 (Table 19)。

再進一步利用逐步迴歸分析法(stepwise regression analysis)分析所有站所有採樣時間之植物性浮游生物豐度與環境因子間之關係,結果顯示植物性浮游生物豐度與pH、總鹼度及獨度等三因子呈顯著相關,其關係可以下列多元迴歸式表示:

 $Y = -4.47 + 61626.24X_1 - 641.93X_2 + 4881.95X_3$

(F = 11.45; df = 3.68; P < 0.001; n = 72; $R^2 = 0.3063$)

式中之Y爲植物性浮游生物豐度(No./L); X_1 爲 $pH;X_2$ 爲總鹼度(ppm); X_3 爲濁度(NTU)。

二動物性俘游生物

1.種類組成及群落特性

於調查期間由 6 個探樣站共探到 54 種 (38 屬)動物性浮游生物,分屬於原生動物門 (Protozoa)、輪虫動物門 (Rotifera)及節肢動物門 (Arthropoda)之甲殼綱 (Crustacea);其中以輪虫動物門之 38 種 (24 屬)爲最多,原生動物門之 10 種 (10 屬)爲其次,而以甲殼綱之 6 種 (5 屬)爲最少 (Tables 9~15; Plates 4~8)。

在全調查期間由各站所採到之總種類數分別爲:德基大壩站 31 種(包括原生動物 8 種,輪虫動物 19 種及甲殼類動物 4 種);字能站 38 種(包括原生動物 8 種,輪虫動物 26 種及甲殼類動物 4 種);松茂站 33 種(包括原生動物 7 種,輪虫動物 23 種及甲殼類動物 3 種);中興路口站 15 種(包含原生動物 5 種,輪虫動物 9 種及甲殼類動物 1 種);平等站 18 種(包括原生動物 5 種及輪虫動物 13 種);武陵站 13 種(包括原生動物 5 種,輪虫動物 7 種及甲殼類動物 1 種)。由6 採樣站所採得之 5 4 種中只有7 種(包括原生動物之 Ceratium hirundinella、Difflugia sp.與Peridinium sp.以及輪虫動物之Euchlanis sp.、Monostyla sp.、Rotaria sp.與Trichocerca similis)是6 站間之共同種,其他的則有些是各站之獨有種,有些則爲2至5 站間之共同種(Table 15)。

各採樣站各次所採到之動物性浮游生物種類數(Fig. 21, Appendix 5)分別爲:德基大壩 $7 \sim 19$ (平均, 13.7 ± 3.2 ; n = 13), 字能 $9 \sim 22$ (平均, 15.7 ± 3.1 ; n = 13), 松茂 $2 \sim 25$ (平均, 7.4 ± 7.3 ; n = 12), 中興路口 $2 \sim 8$ (平均, 5.2 ± 2.0 ; n = 12)

= 8),平等 1 ~ 7 (平均, 3.7 ± 2.4; n = 13) 及武陵 1 ~ 7 (平均, 3.5 ± 1.8; n = 13);全調查期各站所採到之平均種類大小依依爲字能>德基大壩>松茂>中興路口>平等> 武陵。

德基大壩與宇能二站各次所採到之動物性浮游生物種類數平均以輪虫爲最多;中興路口、平等與武陵等三站則以原生動物爲最多。松茂站除了75年10月21日、11月12日與12月2日,以及76年5月18日外,其他各次之採樣中,動物性浮游生動種類皆以原生動物爲最多(Fig. 21,Appendix 6)。若以全調查期之豐度(No/L)及相對豐度(%)來看,除了平等站之75年10月21日、11月12日與12月22日者外,各站各次採得之動物性浮游生物量皆以原生動物爲最多,輪蟲動物爲其次,而以甲殼類動物爲最少(Figs. 22、23;Appendixes7、8)以整個調查期間之平均而言,由德基大壩、宇能、松茂、中興路口、平等及武陵各站所採到之原生動物量分別佔各站總動物性浮游生物量之98.5、98.1、94.8、95.3、76.6及94.8%,而原生動物中之Peridinium量則分別佔各站總動物性浮游生動量之91.2、91.0、57.0、90.8、46.9及58.3%,爲所有種類之冠。

2. 學度

各採樣站各次所採得動物性浮游生物之總豐度(total abundance, No./L)呈明顯之時 空變化(Fig. 22, Appendix 7),其變化範圍分別爲:德基大壩 653~41,061 (平均, 13737 ± 13035 ; n=13) ; 宇能 $1918 \sim 134240$ (平均, 42136 ± 44031 ; n=13) ; 松 茂5~2,949,333 (平均,457,334±1,000,054; n=12);中興路口38~972 (平均, 245 ± 316 ; n=8); 平等 $0.4 \sim 555$ (平均, 64 ± 149 ; n=13) ; 武陵 $0.7 \sim 1551$ (平均, 144 ± 424; n = 13)。全調查期各站平均總豐度之大小依序爲松茂>字能> 德基大 壩>中與路口>武陵>平等。德基大壩站之動物性浮游生物豐度之最高點發生於 76 年 1 月 12 日,最低點於75年10月21日;宇能站之動物性浮游生物豐度之最高點發生於76年4月27日 ,最低點於 75年 11月 12日;松茂站之動物性浮游生物豐度之最高點發生於 75年 11月 12日, 最低點則於76年2月5日;動物性浮游生物量於75年11月22日後急劇下降,於12月22日水 面聚集之浮木消失後,其量繼續下降,而於76年2月5日達最低點;往後又繼續回升,但於4 月6日後則起伏變動。自75年12月22日至76年6月26日這段期間,水面上並無浮木,使 水能流通,這可能是造成這段期間動物性浮游生物量低之原因。中與路口站動物性浮游生物豐 度之最高點發生於76年3月20日,最低點於2月5日;平等站者之最高點發生於76年6月9 日,最低點於75年12月22日;武陵站者之最高點發生於76年4月27日,最低點於75年 12月2日。

德基大壩、宇能與松茂等三站動物性浮游生物量之變化與植物性浮游生物量之變化頗相對 應(Figs. 18, 22)。

原生動物中之Peridinium sp. 幾乎爲各站動物性浮游生物之優勢種,其豐度呈明顯之時空變化(Fig. 24);其時空 變化幾乎等於全動物性浮游生物豐度時空變化(對照Figs.22及24)之影像(image)。Peridinium 豐度之變化範圍分別爲:德基大壩 548~40010(平均,12965 ± 12794; n = 13),字能 1567~130533(平均,37948 ± 39747; n = 13),松茂 $0.6 \sim 2863360$ (平均,445334 ± 972467; n = 12),中興路口 $28 \sim 945$ (平均,235 ± 310; n = 8),平等 $0 \sim 511$ (平均,53 ± 139; n = 13),武陵 $0 \sim 1543$ (平均,134 ± 424; n = 13);全調查期各站Peridinium 平均豐度之大小依序爲松茂〉字能〉德基大壩〉中興路口〉武陵〉平等。松茂站之Peridinium 平均豐度雖較德基大壩及字能站者爲高,但其高豐度只限於 75 年 10 月 21 日至 12 月 2 日;於 12 月 22 日水面聚集之浮木消

失,水流暢通後,其豐度則遠較德基大壩及字能站者爲低(Fig. 24; Appendix 9)。

3. 種歧異度

各採樣站動物性浮游生物之種歧異度呈明顯之時空變化(Fig. 25, Appendix 5),其變化範圍分別為:德基大壩 $0.18 \sim 0.92$ (平均, 0.49 ± 0.27 ; n=13),字能 $0.14 \sim 1.14$ (平均, 0.53 ± 0.29 ; n=13),松茂 $0.12 \sim 1.81$ (平均, 0.86 ± 0.61 ; n=12),中與路口 $0.08 \sim 1.76$ (平均, 0.54 ± 0.53 ; n=8),平等 $0 \sim 2.02$ (平均, 0.90 ± 0.60 ; n=13),武陵 $0 \sim 1.73$ (平均, 0.92 ± 0.59 ; n=13)。全調查期各站平均歧異度之大小依序爲武陵>平等>松茂>中與路口>字能>德基大壩;各站種歧異度之時間變化並無規則可尋。動物性浮游生物之種歧異度遠較植物性浮游生物者爲小(對照 Figs. 20 與 25)。

4. 各站間群落相似度之比較

利用全調查期各站動物性浮游生物種類之出現與否,分別計算各站間群落相似度之結果,顯示緊鄰之站間群落相似(Table 16)。

5. 動物性浮游生物豐度與環境因子間之關係

利用相關分析法分析所有站所有採樣時間之動物性浮游生物豐度與環境因子間之關係,結果顯示動物性浮游生物豐度與植物性浮游生物豐度、水溫、導電度、總鹼度、化學需氧量、懸浮性固形物、濁度、氨態氮、亞硝酸態氮、正磷酸態磷(PO-P)、總磷、矽酸及葉綠素甲等因子呈顯著正相關,而與溶氧量呈顯著負相關(Table 17)。若把各站所有採樣時間所得之資料加以平均,再分析各站動物性浮游生物豐度與環境因子間之關係,結果則顯示與懸浮性固形物、濁度、氨態氮、正磷酸態磷及矽酸等因子呈顯著正相關(Table 18)。若把各採樣時間所有站之資料加以平均,再分析各採樣時間動物性浮游生物豐度與環境因子間之關係,結果則顯示與導電度、總鹼度、化學需氧量、濁度、正磷酸態磷、總磷、硫化物及葉綠素甲等因子呈顯著正相關(Table 19)。

進一步利用逐步短歸分析法分析所有站所有採樣時間之動物性浮游生物豐度與環境因子間之關係,結果顯示與總鹼度、濁度、氨態氮、正磷酸態磷及矽酸等因子呈顯著相關,其關係可以下列多元廻歸式表示。

 $Y = -7.43 - 1567.83X_1 + 47550.08X_2 + 539.19X_3 + 2530.85X_4 + 54107.44X_5$

(F = 385.77; df = 5.66; P < 0.001; n = 72; $R^2 = 0.9644$)

式中之Y為動物性浮游生物豐度(No./L);X,為總鹼度(ppm);X。為濁度(NTU); X,為氨態氮(ppm);X,為正磷酸態磷(ppb);X。為矽酸(ppm)。

利用逐步廻歸分析法,分析所有站所有採樣時間Peridinium量與環境因子間之關係,結果顯示與總驗度、濁度、氨態氮、正磷酸態磷及矽酸等因子呈顯著相關,其關係可以下列多元廻歸式表示:

 $Y = -7.21 - 1509.84X_1 + 46458.71X_2 + 511.06X_3 + 2455.24X_4 + 51737.29X_5$

(F = 392.85 ; df = 5.66 ; P < 0.001 ; n = 72 ; $R^2 = 0.965$)

式中之Y爲Peridinium數量(No./L),X,爲鹼度(ppm);X,爲濁度(NTU);X,爲 氨態氮(ppb);X,爲正磷酸態磷(ppb);X,爲矽酸(ppm)。此式與上面表示總動物性浮游生物量與環境因子間關係之多元廻歸式很相似。

討 論

大甲溪上游所出現之植物性浮游生物種類(24種,21屬)及豐度與世界其他地區河川所出現

者相較要低很多;但其種類組成大致上以矽藻(黄色藻植物門)爲主,與世界其他地區河川之情形頗相吻合。德基水庫中所出現之植物性浮游生物種類(21種)與世界其他地區之靜水域(水庫及湖沼)所出現者相較要低很多;例如美國Colorado River之 Lake Mead 有 79 種 (Stacker et al., 1974), Montana 州之貧營養性湖 Fathead Lake 則有 199 種 (Morgan, 1971)。

影響水域植物性浮游生物之種類組成、群落構造及豐度之因子相當多;因此,很難確立導致其時空變化之單純因果關係。濁度、水溫及營養鹽之季節變異可能是很重要之因素。本調查之結果顯示,水溫、pH 及亞硝酸態氮與植物性浮游生物量呈正相關,可能是影響大甲溪上游植物性浮游生物量時空變化之主要因子;至於其他營養醫(如氨態氮、硝酸態氮、正磷酸態磷及矽酸,可能因濃度高過植物性浮游生物之基本需求量而不是限制因子(Table 17)。一般說來水域濁度之增加會阻碍其植物性浮游生物之光合作用,進而抑制其增植(Berner, 1951; Roy, 1955; Verduin, 1951),但本調查所得之結果却顯示濁度與植物性浮游生物量呈正相關;導致這種反常關係之原因究竟如何,無法得知。可能的解釋是植物性浮游生物量之增加使水之濁度增加;因此,兩者間呈正相關。

大甲溪上游水中之植物營養鹽濃度雖然很高,但是植物性浮游生物量並不多 ;這可能是由於 Peridinium之大量繁生形成被蔭 (shading effect),阻碍及抑制植物性浮游生物之光合作用及增殖 所致;又,由於農藥之介入使對農藥毒性敏感之種類無法生長增殖或降低增殖率,也可能是原因之 一。實際情形是否如此,有待進一步做生物檢定試驗加以探討。

種歧異度指數是反應群落構造之一指標;當一群落中每種之個體數多而種類少時,例如在受汚染或水質差之水域,此值小;反之,當一群落中每種之個體數少,而種類多時,例如在乾淨或水質良好之水域,則此值大。在嚴重污染之水域,此值小於 1 ,在中度污染之水域為 1 ~ 3 ,在乾淨之水域則大於 3 (Wilhm and Dorris , 1968)。大甲溪上游各站植物性浮游生物之種歧異度指數介於 0.43 與 3.13 之間,各站全調查期之平均值則介於 1.51 與 2.59 之間;若根據上示之標準,其水質屬中度污染。

依據OECD 水域營養狀態之分類標準, 貧營養性水域之總磷及總氮平均值分別爲 8.6 及 775 (ppb);中營養性水域者分別爲 25.1 及 798 (ppb);優營養性水域者分別爲 113 及 2367 (ppb)。木調查所得大甲溪上游 6 站全調查期之平均總磷及總氮值分別爲 108.4 及 516.4 (ppb),若依據上示之標準,其水質屬中營養性而偏優營養性。 Carson (1977)發展出根據水中總磷量(TP; ug/L或mg/m³)以表示營養狀態之指數(trophic state index, TSI),其估算式爲:

TSI = 10 (6 - log₂ 48
$$\frac{1}{\text{TP}}$$
)
= 10 (6 - 1.4427 log_e $\frac{48}{\text{TP}}$)

Rast and Lee (1978)提出當TSI 值大於 40 時,即表示優養化。把本調査所得各站全調査期之平均糖磷量($\mu g/L$)值分別代入上式加以計算則得TSI 值皆大於 40 (介於 62 與 79間);因此,大甲溪上游可歸屬優養化水域。

Palmer (1969)根據以往165位研究者所發表之報告歸納出對有機污染具有忍受性之頭60個藻屬 (genus);本調查所發現之植物性浮游生物 (Table 7)除了 Characium、 Staurastrum、 Tetraedron、 Eunotia 及 Rhizosolenia等 5屬外,其他各屬皆在他所列對有機污染具忍受性之頭 52個屬中。 Scenedesmus、 Nitzschia、 Navicula、 Synedra、 Melosira、 Gomphonema 及 Cyclotella 則在頭 15個屬中;由此可見大甲溪上游受有機污染程度之一般。

大甲溪上游所出現之動物性浮游生物種類 54 種(原生動物 10 種,輪虫動物 38 種, 榜脚類 1 種, 及枝角類 5 種)與其他熱帶地區河川所出現者相較,要低很多;例如在澳洲之 Alligator River所出現者未包括原生動物就有 281 種(輪虫動物 227 種, 榜脚類 14 種, 枝角類 35 種及介形類 5 種

; Tait, Shiel and Koste, 1984); 在南澳洲之River Murray所出現者有 66 種(輸虫動物 35 種,以及燒脚類與枝角類 31 種; Shiel, 1979); 動物性浮游生物(尤其是甲殼類中之燒脚類與枝角類)對農藥之毒性非常敏感,這可能是造成大甲溪上游動物性浮游生物種類及甲殼類數量少之原因。爲了證實這一點必須進一步做生物檢定試驗加以探討。

大甲溪上游各站動物性浮游生物之種歧異度指數介於 0 與 1.76之間,各站全調查期之平均值則介於 0.49 與 0.92之間,小於 1;若依上述Wilhm and Darris (1968)之標準則大甲溪上游之水質汚染程度已相常嚴重。

影響水域動物性浮游生物之種類組成、群落構造及豐度之因子也是相當多,且通常是由幾個因子交互作用;因此,也很難確立單純之因果關係。本調查之結果顯示,動物性浮游生物量與植物性浮游生物量、水溫、導電度、總鹼度、COD、懸浮固形物、濁度、氨態氮、亞硝酸態氮、正磷酸態磷、總磷、矽酸及葉綠素甲等因子呈正相關,而與溶氧量呈負相關(Table 17)。大甲溪上游之動物性浮游生物幾乎全以原生動物之Peridinium 為主;因此,表 17 中所示動物性浮游生物量與環境因子間之關係,幾乎等於是Peridinium量與環境因子間之關係。Peridinium量與水溫呈正相關,表示溫度之高低影響其量之多寡;與導電度、總鹼度及COD呈正相關,表示其喜愛高導電度、鹼度及有機物量之環境。Peridinium量多時會增加懸浮固形物量及濁度;因此,與此二因子呈正相關;Peridinium與氮態氮、亞硝酸態氮、正磷酸態減、總磷及矽酸等呈正相關,表示這些營養鹽之多寡會控制其量之高低。Peridinium本身也含有葉綠素甲;因此,其量多時葉綠素甲量也多而呈正相關。Peridinium之量多時,由於其死亡分解耗氧,會導致溶氧量之降低;因此,其量與溶氧量呈負相關;也可能表示其能忍受低溶氧環境。

異營性細菌所分泌之代謝副產物會抑制藻類生長(Benzion and Dor, 1981; Dor & Benzion, 1980; Fitzgerald, 1969)且其抑制作用是選擇性的(Fitzgerald, 1969);反之,有些藻類則會分泌某些脂肪酸以抑制異營性細菌生長(Davis and Gloyna, 1970; Dor, 1978; Pratt, 1942; Spoehr et al.; 1949)。因此,在富含有機物與有異營性細菌大量繁生之環境中,只有對異營性細菌所分泌之代謝副產物具抵抗力,且能與異營性細菌競爭空間和營養物之藻類,才能生長增殖(Dor, Schechter and Bromley, 1987)。不過,異營性藻類和細菌間之競爭和敵對關係並不完全排除對彼此代謝副產物之相互依賴性,即細菌依賴光合作用產生之氧氣而藻類則依賴細菌分解作用所產生之二氧化碳和其他營養物。

Peridinium 因能利用水中之無機營養鹽,藉光合作用以行自營性生活,植物學家把其歸為植物(藻類);但也因能利用水中之有機物以行異營性生活,且能移動,動物學家把其歸爲動物(原生動物之渦鞭毛虫類);本研究根據個人之偏好將其歸爲原生動物。由於Peridinium 能利用溶解性有機物行異營性生活,可助其生存於低光度(高濁度、低透明度)之環境;同時,也使其成爲異營性細菌之競食者。雖然,Peridinium 與異營性細菌間可能會有彼此相剋之作用,但Peridinium 似乎能忍受異營性細菌所產生之毒性代謝副產物而在高異營性細菌濃度下仍能生長增殖。大甲溪上游之其他植物性浮游生物可能因無法忍受異營性細菌所產生之代謝副產物而其生長增殖受抑制;這可能也是造成其種類與數量不多的原因之一。

動物性浮游生物對植物性浮游生物之攝食壓非常高;因此,由於殺蟲劑或其他原因之影響使動物性浮游生物死滅而引起藻類異常增殖(水華)之現象很常見。一般說來,生物對抗動物攝食壓之機制有:(1)改變形態或增大個體,以避免被捕食;(2)產生毒性物質以抑制捕食者之攝食或增殖;(3)缺乏某種營養物或形成不易消化物使不適合做為捕食者之食物。大甲溪上游之Peridinium可能也具有如上述之機制以避免被捕食而大量增殖。

近年來日本之水庫也常發生Peridinium 異常增殖而使庫水呈紅褐色至黃褐色之現象(淡水紅

潮);發生淡水紅潮之水庫可分爲於四、五月到十、十一月間之暖水期出現者(夏型),於十、十一月到翌年四、五月間之冷水期出現者(冬型)及函蓋兩期而出現者(兩期型)。形成紅潮之Peridinium 種有:Peridinium elpatiewskyi 、P. cumningtonii 、P. africanum、P. inconspicum、P. polonicum、P. cinctum、P. volzii 及P. penardii (門田、1987)。美國加洲之Clear Lake (Horne et al., 1971)及一水庫(Horrgesell et al., 1976)也出現Peridinium之異常增殖現象。Peridinium cinctum fa. westii 在 Israel 之 Lake Kinneret 於春天發生異常增殖,其量佔全植物性浮游生物量之95%,當它們死後分解時導致細菌量之增加而使湖水呈褐色及帶味(Berman and Rodhe,1971)。此一浮游生物豐度之季節變化乃由於湖中營養鹽之特性,再循環及可獲性所致;又該地區之氣候及水文狀況,夏天溫度高而冬天多雨,是觸發及維持其異常增殖之重要間接因子(Serruya et al.;1978)。Peridinium 通常需要較高導電度、檢度及pH()8)之環境以生長增殖:Lake Kinneret 中所出現之Peridinium cinctum fa. westii於實驗室培養時,需加微量之 Selenium(約50mg/L)於培養液中以促進增殖;天然湖水中假如缺失Se,會抑制其增殖(Lindstrom and Rodhe, 1978)

根據實驗室內培養試驗之結果,Lindstrom (1984)指出P. cinctum fa. westii 需在水溫高於10°C之條件下,才能產生高生體量(biomass),雖然在低達5°C之情況下仍能以非常慢之速度增殖;當水溫高於27°C時會抑制其增殖;固碳作用 (carbon fixation)在pH7左右效力最高,但增殖率及生體量則於pH8.3時爲最高。pH在實驗室培養中之變化爲7.5~9.5,與 Lake Kinneret 中湖水pH之變化一致;通常在Peridinium 量最多時之湖水pH由8增至10(Dubinsky and Polna, 1976; Lindstrom, 1984)。在Lake Kinneret 中Peridinium 之最大淨生產量發生在光照度適度,以及水溫爲14~22°C時 (Pollingher and Serruya, 1976),與實驗室培養試驗所得之結果相吻合 (Lindstrom, 1984)。

以日本永瀬水庫所出現之兩種 Peridinium 進行實驗室內增殖試驗之結果顯示,P.cumingtonii(夏天型)以水溫為 20 ℃時之增殖率為最高,15 ℃時者次之;在 25 ℃時仍能增殖,但在 10 ℃時則不能增殖。P. penardii(多天型)在水溫 20 ℃及 15 ℃時增殖率最好,在 10 ℃時仍能緩慢增殖,但在 25 ℃時則不能增殖(畑,1987)。在永瀬水庫中 P. cumingtonii 於水溫為 16 ~ 28 ℃時出現,顯著之紅潮則出現於 22 ~ 28 ℃時,與培養試驗所得之結果頗一致。至於 P. penardii 則於水溫為 16 ~ 17 ℃以下之秋季或翌年之春季出現;在培養試驗中,於水溫 20 ℃時其增殖良好,且其初期增殖速度較 15 ℃時爲佳;不過,於 15 ℃時其增殖量爲最高。P. penardii 在 10 ℃時雖能增殖,但在 25 ℃時則完全不能增殖;一般說來,在培養試驗中之增殖至適溫度常有較於原水域中者高幾度之情形;因此,其在天然水域之增殖至適溫度,最好被推定爲 15 ℃左右(畑,1987)。

P. cuming tonii 於pH為 $7.1 \times 7.6 \times 8.3$ 及 9.5 之狀況下,P. penardii 於 pH 為 $6.7 \times 7.6 \times 8.6$ 及 9.3 之狀況下分別培養試驗之結果顯示,前者在 4 種 pH 條件下之增殖大小依序為pH $7.6 \times 8.3 \times 7.1$,在 pH 9.5 之條件下之增殖則非常小;後者在 4 種 pH 條件下之增殖大小則依序為pH $8.6 \times 7.6 \times 9.3$,在pH $8.6 \times 7.$

Peridinium 的增殖對磷之需求量較對氮者爲高;因此,磷成爲增殖限制因子之可能性較高;形成紅潮所需之最低溶解性N及P之濃度分別爲 $0.02\sim0.05~mg/\ell$ 及 $0.02\sim0.1mg/\ell$ (畑 , 1987)。大甲溪上游水域溶解性穗氮(NH, \sim N 、NO, \sim N 及 NO, \sim N 之總和)濃度爲 $0.190\sim1.228~mg/\ell$ (平均, 0.516 ± 0.218 ; n=72),高出形成紅潮所需最低溶解性氮濃度很多,應該不會

成爲 Peridinium 紅潮發生之限制因子;但是溶解性磷濃度(PO4-P)則爲 0.01 ~ 0.374 mg// (平均, 0.024 ± 0.050; n = 77),接近形成赤潮所需之最低溶解性磷濃度,可能成爲Peridinium 紅潮發牛之限制因子。Peridinium 增殖時對 Ca 之最低需求濃度 (3 mg/l)較矽藻、綠 藻及藍藻等 8 種淡水藻類者(0.2 mg/l) 為高;其對 Ca 之最高需求濃度為 10 mg/l(畑, 1987)。大甲溪上游水域之 Ca 滯度為 $13.6 \sim 96.0 \, \text{mg/}\ell$ (平均, 28.3 ± 14.4 ; n = 77), 高於 Peridinium 之最高需求濃度;因此,不可能是限制Peridinium 增殖之因子。Peridinium 與其 他 dinof lagel lates (渦鞭毛虫類或渦鞭毛藻類)需要有機物及維他命(特別是B族維他命)以增 殖;日本永瀨水庫水中所含 B₁; 、Thiamin及Biotin 之濃度分別爲 0.5 ~ 1.5 ng/ℓ 、 50 ~ 300 ng/ℓ及1~15 ng/ℓ;當紅潮發生時, Thiamin 及 Biotin 量有增加之傾向, 而 Bi. 量則顯著地 減少,表示 B_{12} 是 Peridinium 增殖之必要因子(畑, 1987)。培養試驗之結果顯示, P. cunningtonii 及 P. penardii 都需要 B₁;以促進增殖;若於培養液中同時添加 B₁; 、 Thiamin 及 Biotin,前一種之增殖量要較單獨添焦 Biz 時爲高;但是對後一種之增殖, Thiamin 及 Biotin 並 不見有相乘性之促進效果。P, cumingtonii 形成紅潮所需之最低 B_{12} 之濃度約爲0.27 ng/ℓ , 而 達最高增殖所需之濃度為 12 ng/ℓ 左右。本調查並没測定水中 B」、濃度,無法與日本永瀾水庫之情 形相比較,也無法推知是否爲大甲溪上游水域中Peridinium 增值之限制因子。不過,由於大甲溪 上游木域之有機質高(COD 濃度 $0.08\sim17.60~\mathrm{mg}/\ell$;平均, 3.68 ± 4.35 ; n=74),流入德 基水庫,經異營性細菌之利用,可能形成大量之B族維他命以促進Peridinium之大量增殖。

河川中浮游生物種類及量之多寡與流速之快慢有很大之關係;一般說來,在流速快之河段,其浮游生物種類及量要較流速慢之河段者爲低(Jones & Barrington , 1985; Reinhard , 1931; Rice , 1938)。本調查之結果顯示,中興路口、平等及武陵等三站之浮游生物(尤其是動物性浮游生物)種類及量,較之其他三站者(德基大壩、宇能及松茂)爲少;其主要原因乃由於前三站之水流快使浮游生物無 法停留足夠的時間以增殖所致。中興路口、平等及武陵等三站之水中營養物質量與其他三站一樣地,都高過Peridinium形成紅潮所需之最低濃度;因此,假如因外力之介入,使其水流減慢或停止而讓Peridinium滯留足夠時間以增殖的話,也有可能形成紅潮。這一點可由松茂站Peridinium量之季節變化情形加以證明。松茂站於自75年10月21日至12月2日之期間,由於水面上有許多浮木積聚阻碍水流,使Peridinium有機會快速增殖;因此,這段期間之Peridinium豐度非常高。相反地,自12月22日水面上聚集之浮木消失(可能被大雨所冲走),水流涌後,Peridinium之豐度變得很低,與中興路口、平等及武陵等三站者很相近。

總而言之,大甲溪上游 Peridinium 之增殖受許多物理、化學及生物性環境因子所影響,各種環境因子並非單獨作用,而是以錯綜複雜之交互作用產生影響;因此,要瞭解其異常增殖之發生機制,必須藉野外物理、化學與生物性因子之長期調查,配合室內培養試驗與生物檢定,做整體性的探討。又爲了瞭解大甲溪上游水域之優養化程度及其演變過程,也必須對該水域之水質與生物相之變化做長期追踪監視。

謝 辭

本研究承行政院農業委員會之資助(計劃編號 76 農建一 12.2 一林 42(6))特此誌謝。在本計劃執行期間承中山大學張院長崑雄博士,農委會林務處保育科吳英陵博士之大力支持與鼓勵,以及中央研究院助理李建義先生與謝莉顯小姐之協助,在此一併誌謝。

参考文獻

- 1.門田 元(編)。1987. 淡水赤潮。恒星社厚生閣, 290pp.
- 2.畑 幸彦。1987. ダム湖に がける淡水赤潮の發生事例。pp. 247 284. 門田 元(編)。淡水赤潮・恒星祉厚生閣。
- 3 Benzion, S. and I. Dor. 1981. Bacterial inhibition of algal growth in photosynetic sewage treatment systems. Proc. 12th Sc. Conf. Israel Ecol. Soc., p.249-258 (Cited in Dor et al., 1987).
- 4. Berman, T. and W. Rodhe, 1971. Distribution and migration of *Peridinium* in Lake Kinnert. Mitt. Interant. Verein Limuol. 19: 266-276.
- 5 Berner, L. M. 1951, Limnology of the lower Missouri River, Ecology 32: 1-12,
- 6. Brower, J. E. and J.H. Zar. 1977. Field and laboratory methods for general ecology. Wm. C. Brown Company Publishers, Dubuqul, Iowa.
- 7. Carson, R. E. 1977. A trophic state index for lakes, Limnol. Oceanogr. 22: 361 369.
- 8 Davis, E. M. and E. F. Gloyna. 1970. Bactericidal effects of algae on enteric organisms. U. S. Dept. Interior, Federal Water Quality Administr., Water Poll. Contr. Res. Ser. 18050 DOLO3/70, 132 pp. (Cited in Dor et al., 1987).
- 9 Dor, I. 1987. The effect of Scenedesmus and Chlorella on heterotrophic bacteria in polluted waters. Verh. Int. Ver. Limnol. 20: 1930-1933.
- 10 Dor, I. and S. Benzion. 1980. Effect of heterotrophic bacteria on the green algae growing in waste water, pp.421 429. In: Shelef. G. and C.T. Soeder (eds.), Algal biomass production and use Elsevier.
- 11. Dor, I., H. Schechter and H. J. Bromley. 1987. Limnology of a hypertrophic reservoir storing wastewater effluent for agriculture at Kibbutz Naan, Israel. Hydrobiologia 150: 225 341 •
- 12 Dubinsky, Z. and M. Polna. 1976. Pigment composition during a *Peridinium* bloom in Lake Kinneret (Israel). Hydrobiologia. 51: 239 243.
- 13 Fitzgerald, G. P. 1969. Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351-359.
- 14. Greenberg, A. E. 1964. Plankton of the Sacremento River Ecology 45: 40 49.
- 15. Horne, A. J., P. Javornicky and C. R. Goldman. 1971. A freshwater " red tide " on Clear Lake, California Limnol Oceanogr. 16: 684 689.
- 16 Horrgesell, P. L., T. H. Sibley and A. W. Knight. 1976. Some observations on dinof lagellate population density during a bloom in a California reservoir. Limnol. Oceanogr. 21:619-624.
- 17 Jones, R. I. and R. J. Barrington. 1985. A study of the suspended algae in the River Derwent, Derbyshire, U. K. Hydrobiologia. 128: 255 264.
- 18 Lindstron, K. 1984. Effect of temperature, light and pH on growth, photosynthesis and respiration of the dinoflagellate *Peridinium cinctum* fa westii in laboratory culture. J. Phycol. 20: 212-220.

- 19 Lindstrom, K. and W. Rodhe. 1978. Selenium as a micronutrient for the dinoflagellate *Peridinium cinctum* fa. westii. Mitt. Internat. Verein. Limnol. 21: 168 — 173.
- 20 Morgan, G. R. 1971. Phytoplankton productivity vs dissolved nutrient level of Fathead Lake, Montana. Diss. Abstr. Int. B. Sci. Eng. 32:2445-6-B (Cited in Staker et al., 1974).
- 21. Palmer, C. M. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5: 78 82.
- 22. Pollingher, U. and C. Serruya. 1976. Phase division of *Peridinium cinctum* fa. westii and the development of the blooms in Lake Kinneret. J. Phycol. 11: 155 162.
- 23. Pratt, R. 1942. Studies on *Chlorella*: vulgars, some properties of the growth inhibitor formed by *Chlorella* cells. Amer. J. Bot. 29:142-148.
- 24 Rast, W. and G. F. Lee. 1978. Summary analysis of the North American (U. S. Portion) OECD eutrophication project: nutrient loading—lake response relationships and trophic state indices. U. S. E. P. A., Ecol. Res. Series, No. EPA 600/3-78-008, 455 pp.
- 25 Reinhard, E. G. 1931. The plankton ecology of the upper Mississippi, Minneapolis to Winona. Ecol. Monogr. 1:395-364.
- 26 Rice, C. H. 1938 Studies on the phytoplankton of the River Thames (1928 1932).

 I. Ann. Bot. n.s. 2: 539 557 (Cited in Greenberg, 1964).
- 27. Roy, H. K. 1955. Plankton ecology of the River Houghly at Palata, West Bengal. Ecology. 36: 169-175.
- 28 Serruya, C., S. Serruya and U. Pollingher. 1978. Wind, phosphorus re release and division rate of *Peridinium* in Lake Kinneret. Verh. Int. Ver. Limmol. 20: 1096-1102.
- 29 Shannon, C. E. and W. Weaver. 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana, 125 pp.
- 30 Shiel, R. J. 1979. Synecology of the Rotifera of the River Murray, South Africa. Aust. J. Mar. Freshwater Res. 30: 255 263.
- 31. Spoehr, H. A., J. H. C. Smith, H. H. Strain, H. W. Miller and G. J. Hardin. 1949. Fatty acid antibacterials from plants. Carnegie Ins. Publ. 586, Washington, DC, 67 pp (Cited in Dor et al., 1987).
- 32 Staker, R. D., R. W. Hoshaw and L. G. Everett. 1974. Phytoplankton distribution and water quality indices for Lake Mead (Colorado River). J. Phycol. 10: 323 331.
- 33. Tait, R. D., R. J. Shiel and W. Koste. 1984. Structure and dynamics of zooplankton communities, Alligator River Region, N. T. Australia. Hydrobiologia. 113: 1-13:
- 34. Verduin, J. 1951. Comparisom of spring diatom crops of Western Lake Erie in 1949 and 1950. Ecology. 32: 662-668.

35.Wilhm, J. L. and T. C. Dorris. 1968. Biological Parameters for water quality criteria. BioSience. 18: 477-481.

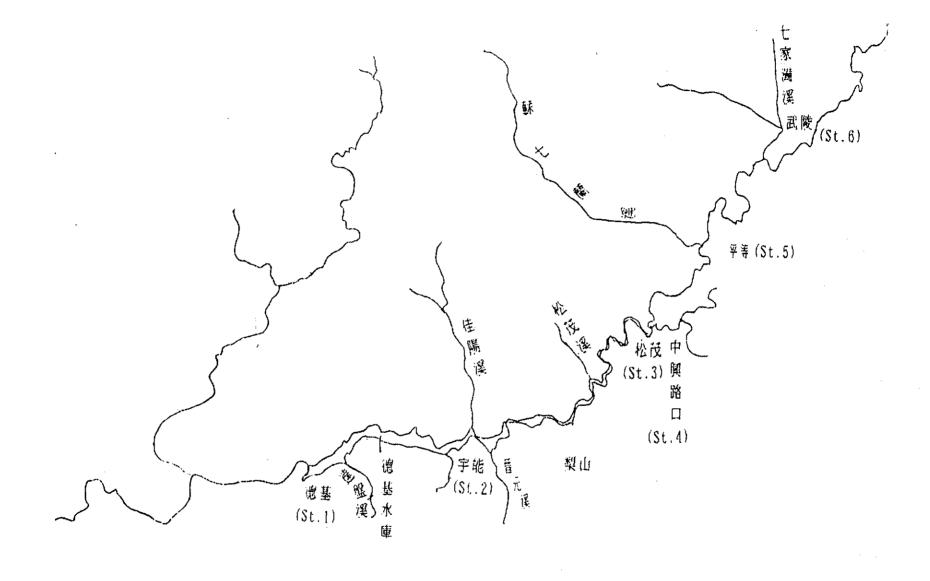


Fig. 1. 調查區全圖及採樣站位置

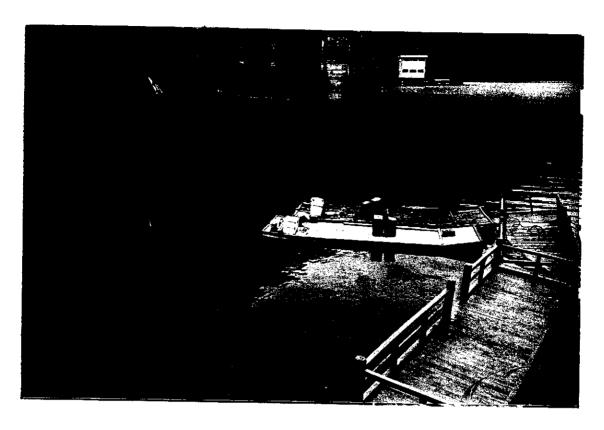


Fig. 2. 大甲溪上游第一採樣站--德基大壩

Fig. 3. 大甲溪上游第二採樣站--宇能遠觀

Fig. 4. 大甲溪上游第三採樣站--松茂遠觀

Fig. 5. 大甲溪上游第三採樣站--松茂站

Fig. 6. 大甲溪上游第四採樣站--中興站

Fig. 7. 大甲溪上游第五採樣站一平等站

Fig. 8. 大甲溪上游第六採樣站一武陵站

Fig. 9. 松茂75.12.03.採樣站,浮木積聚.

Fig.10. 松茂76.01.13.遠觀,前彎口無浮木,水深藍,後彎口浮木積聚.



Fig.11. 松茂76.01.13.採樣站,已不見浮木,水呈藍綠色.

Fig. 12. 松茂76.02.06.遠觀,彎口無浮木積聚,水偏綠.

Fig.13. 松茂76.02.06.採樣站,漂浮少許浮木,水偏線.

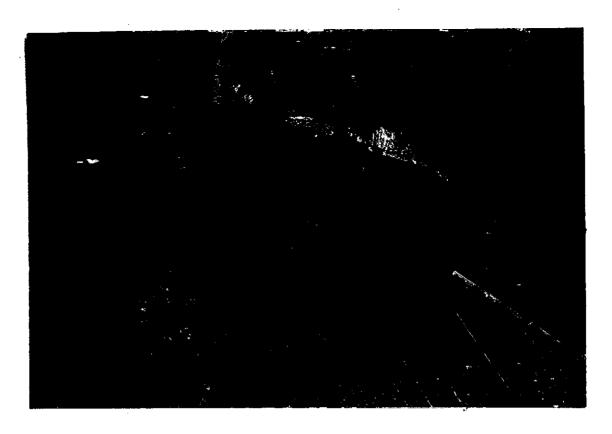


Fig.14. 松茂76.04.28.遠觀,彎口無浮木積聚.

Fig.15. 松茂76.04.28.採樣站,無浮木,水藍綠.

Fig.16. 松茂76.05.18.遠觀,豪兩造成坍方,水混濁.

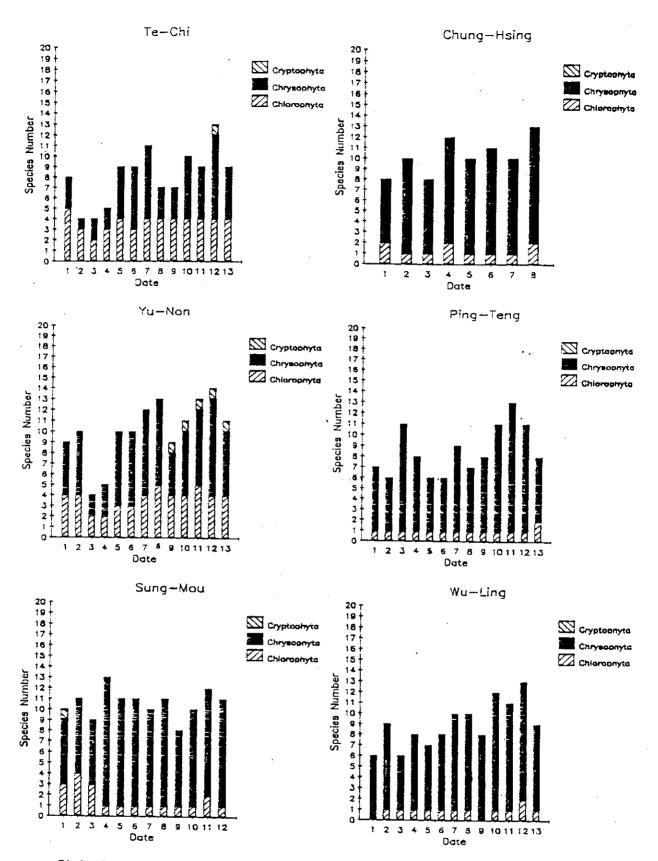


Fig. 17. Temporal and spatial variation in the species number of the groups of phytoplankton in upper Ta-Chia Rriver. Date: 1, Oct.21, 86'; 2, Nov.2; 3, Dec.2; 4, Dec.22; 5, Jan.12, 87'; 6, Feb.5; 7, Feb.23; 3, Mar.20; 9, Apr.6; 10, Apr.27; II, May 18; 12, Jun.9; 13, Jun.26, 87'.

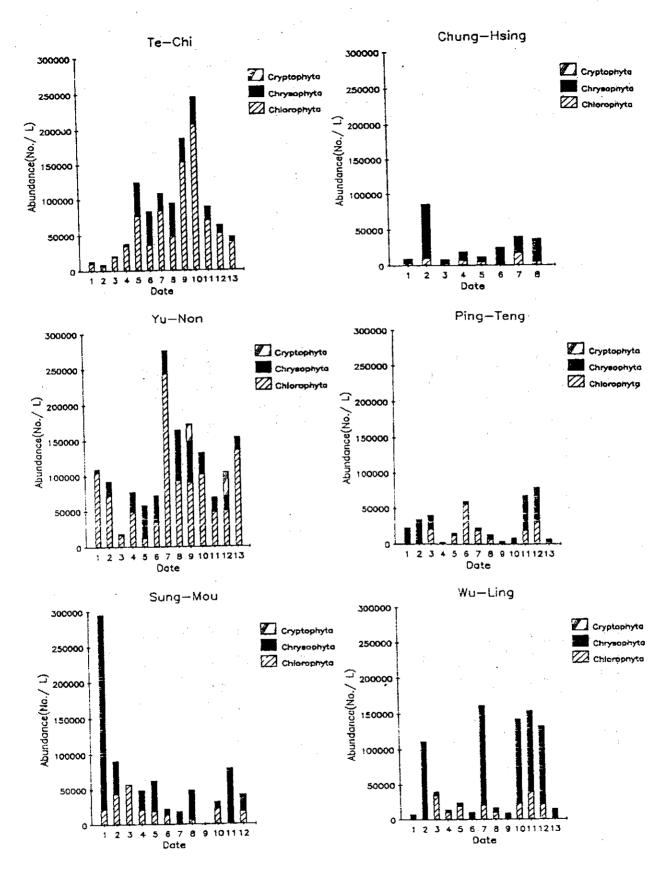


Fig. 18. Temporal and spatial variation in the abundance of the groups of phytoplankton in upper Ta-Chia River. Date as shown in Fig. 1.

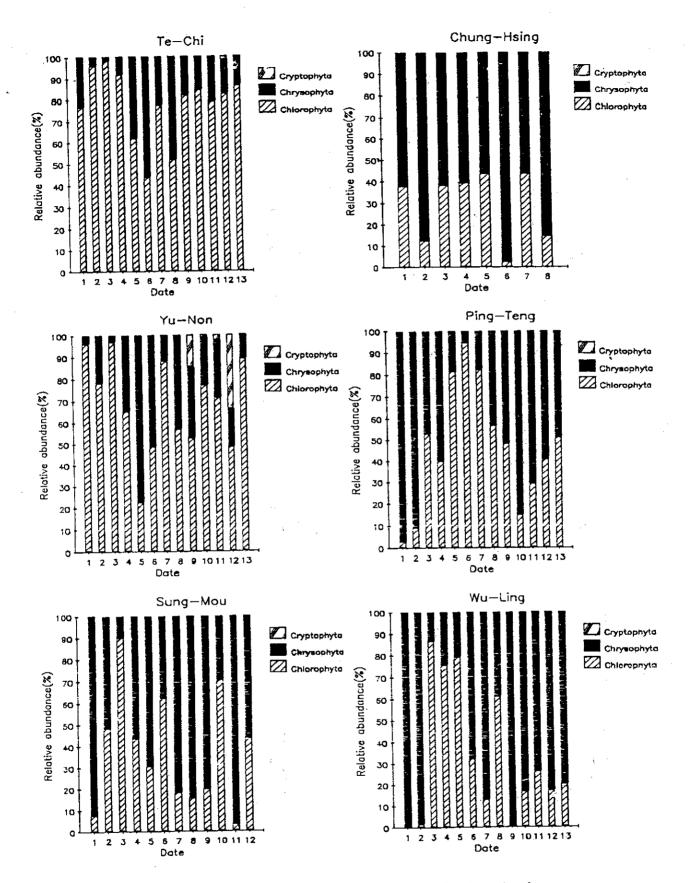


Fig. 19 Temporal and spatial variation in the relative abundance of the groups of phytoplankton in upper Ta-Chia River. Date as shown in Fig. 1.

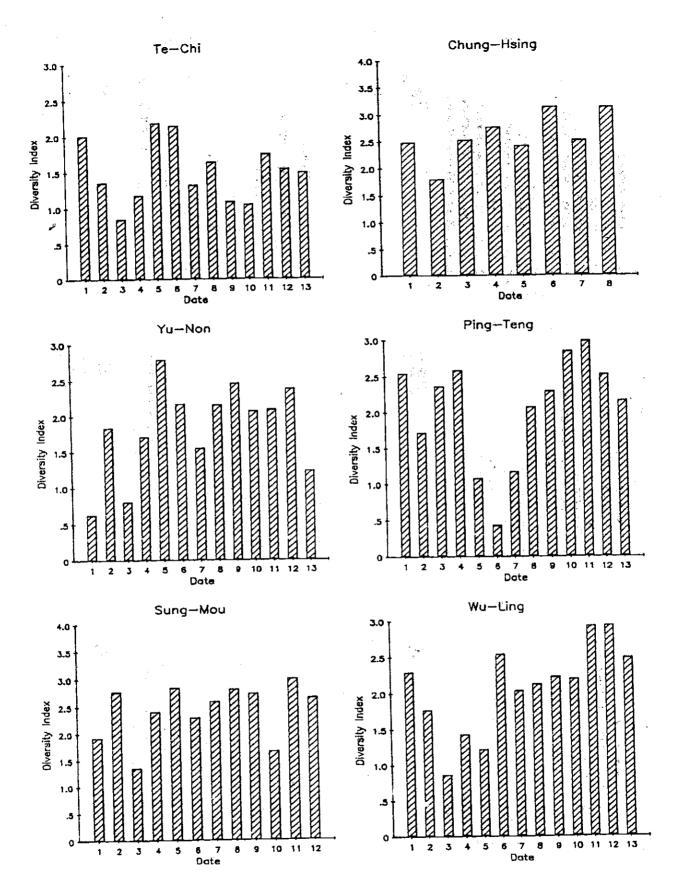


Fig. 20 Temporal and spatial variation in the species diversity of phytoplankton in upper Ta-Chia River. Date as shown in Fig.

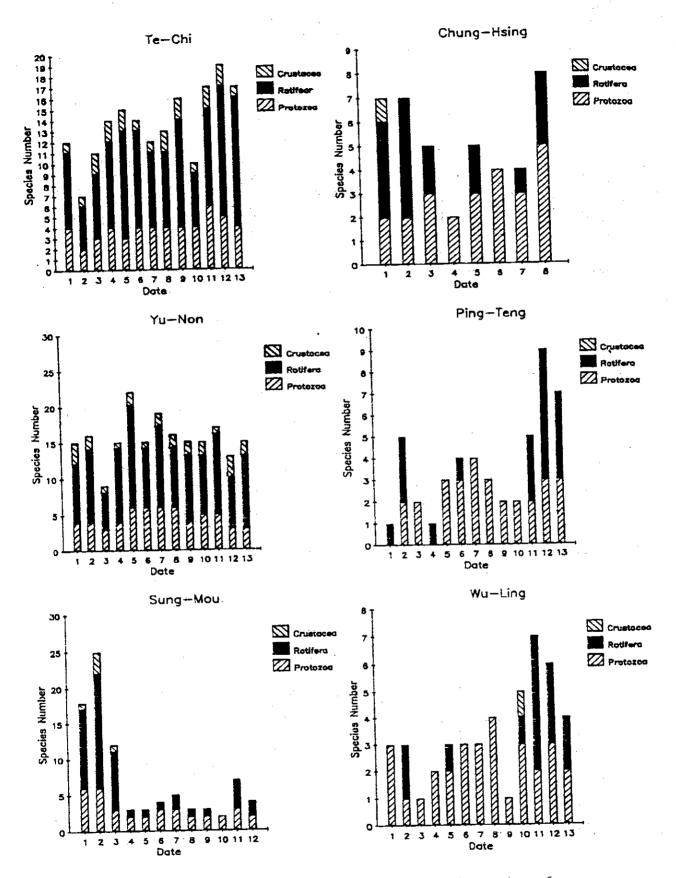


Fig. 21. Temporal and spatial variation in the species number of the groups of zooplankton in upper Ta-Chia River. Date as shown in Fig. 1.

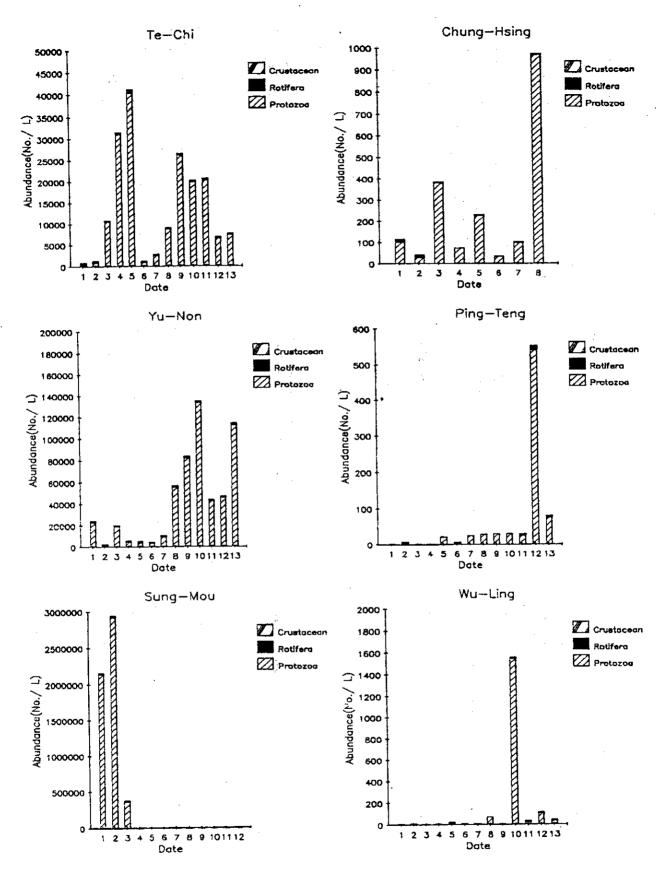


Fig. 22. Temporal and spatial variation in the abundance of the groups of zooplankton in upper Ta-Chia River. Date as shown in Fig. 1.

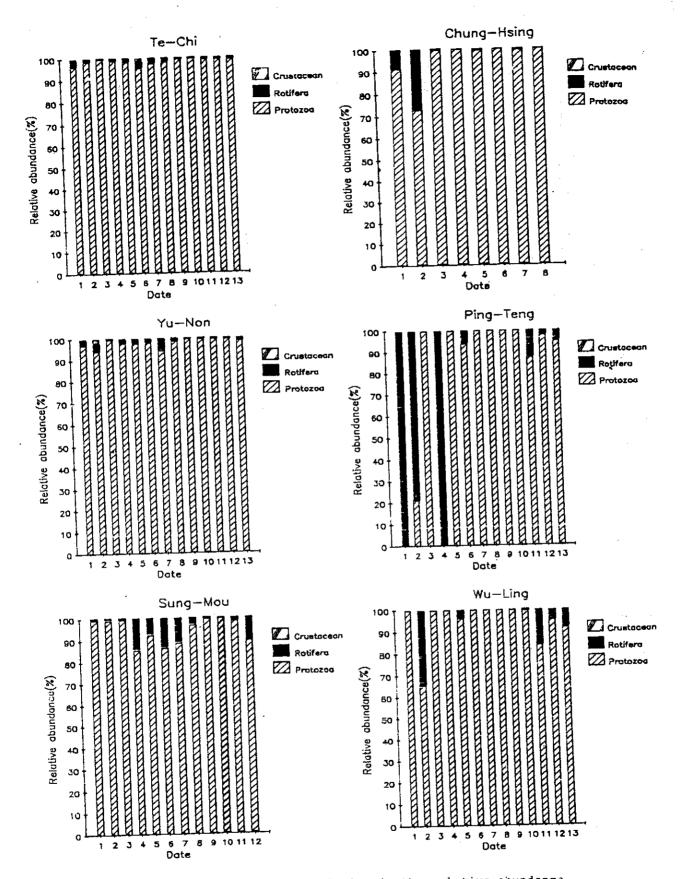


Fig. 23. Temporal and spatial variation in the relative abundance of the groups of zooplankton in upper Ta-Chia River. Date as shown in Fig. 1.

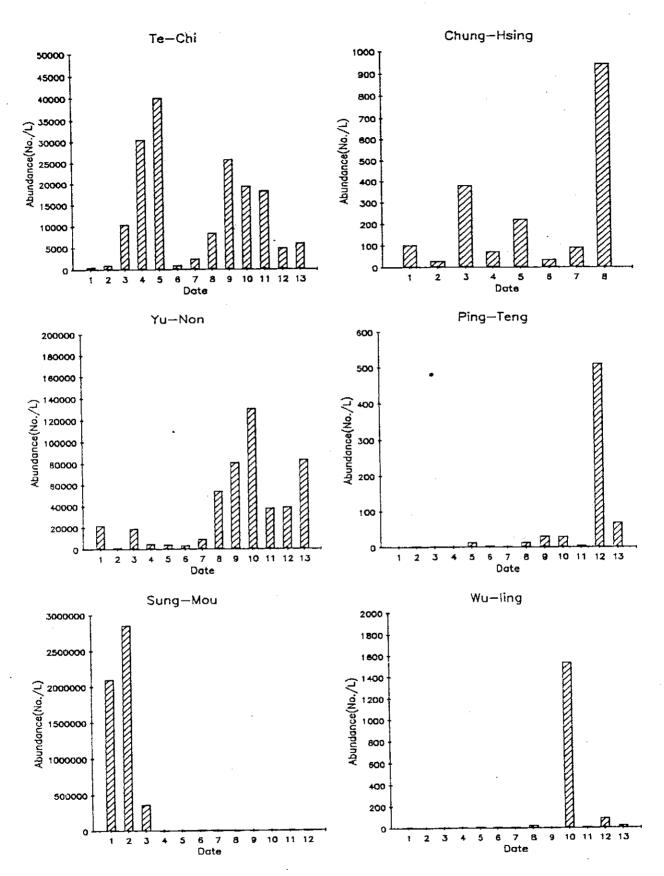


Fig. 24. Temporal and spatial variation in the abundance of Peridinium sp. in upper Ta-Chia River. Date as shown in Fig. 1. $^{\circ}$

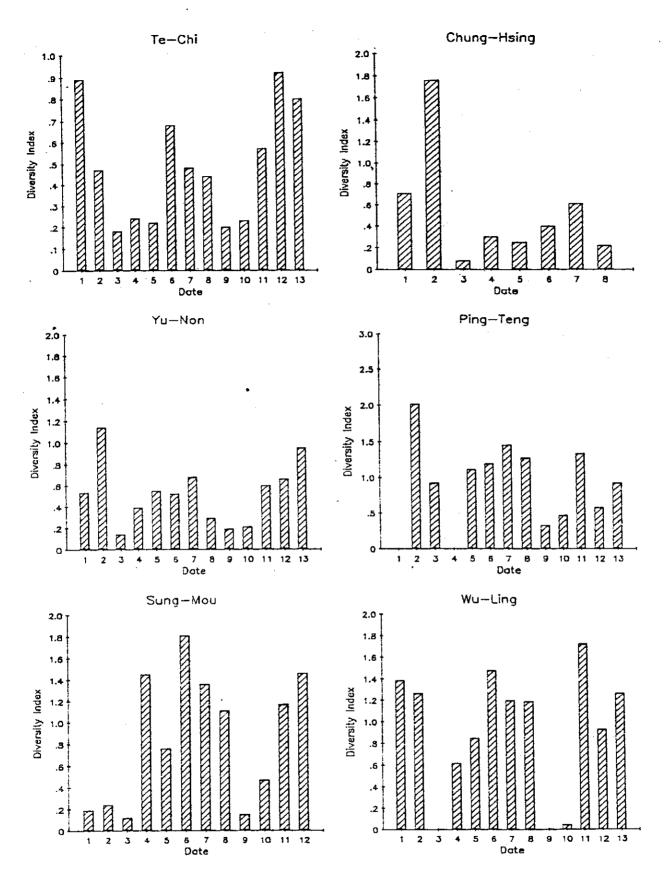


Fig. 25. Temporal and spatial variation in the species diversity of zooplankton in upper Ta-Chia River. Date as shown in Fig. 1.

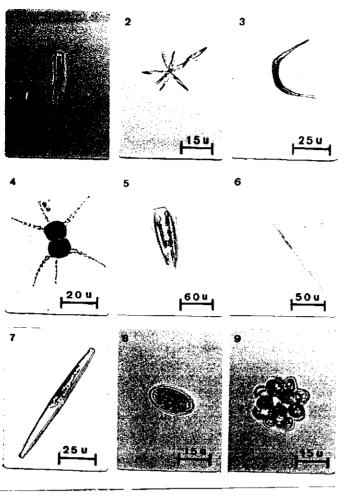


Plate 1. 大甲溪上游植物性浮游生物 圖片(I)

- 1. Achnanthes sp.
- 2. Actinastrum hantzschii
- 3. Characium sp.
- 4. <u>Stauastrum</u> sp.
- 5. Surirella sp.
- 6. Synedra acus
- 7. Synedra ulna
- 8. Cocconeis sp.
- 9. <u>Coelastrum sphaericum</u>

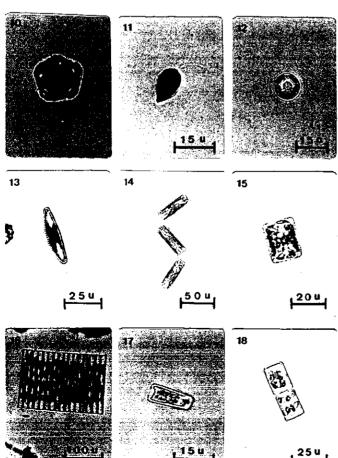
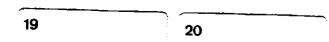



Plate 2. 大甲溪上游植物性浮游生物 圖片(II)

- 10. <u>Coelastrum sp.</u>
- 11. <u>Cryptomonas sp.</u>
- 12. Cyclotella sp.
- 13. <u>Cymbella</u> sp.
- 14. Diatoma sp.
- 15. Eunotia sp.
- 16. Fragilaria sp.
- 17. Gomphonema sp.
- 18. Melosira sp.

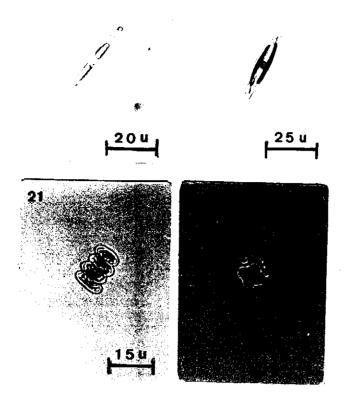


Plate 3. 大甲溪上游植物性浮游生物 圖片(III)

- 19. <u>Nitzschia</u> sp.
- 20. Navicula sp.
- 21. Secnedesmus sp.
- 22. Tetraedron sp.

2 3 75 u

75 u

75 u

75 u

8 9

Plate 4. 大甲溪上游動物性浮游生物 圖片(I)

- 1. Arcella sp.
- 2. Centropyxis sp.
- 3. Ceratium hirundinella
- 4. Difflugia sp.
- 5. <u>Euglena</u> sp.
- 6. Peridinium sp.
- 7. Vorticella sp.
- 8. Anuraeopsis sp.
- 9. Asplanchna sp.

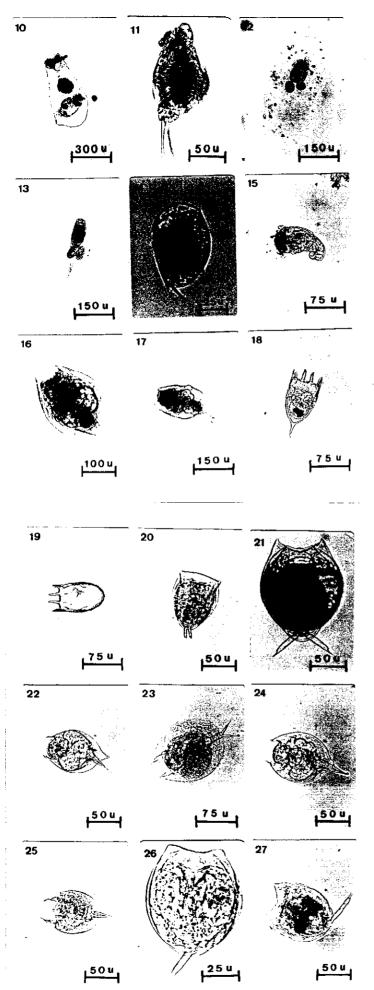


Plate 5. 大甲溪上游動物性浮游生物 圖片(II)

- 10. Asplanchna sp.
- 11. Cephalodella gibba
- 12. Collotheca mutabilis
- 13. Collotheca pelagica
- 14. <u>Colurella uncinata</u>
- 15. Conochilus unicornis
- 16. Euchlanis sp.
- 17. Euchlanis sp.
- 18. <u>Keratella cochlearis</u> var. <u>tecta</u> f. <u>micracantha</u>

Plate 6. 大甲溪上游動物性浮游生物 圖片(III)

- 19. <u>Keratella cochlearis</u> var. <u>tecta</u>
- 20. Lecane flexilis
- 21. Lecane luna
- 22. Lepadella acuminata
- 23. Lepadella ovalis
- 24. Lepadella ovalis
- 25. Lepadella patella
- 26. Monostyla closterocerca
- 27. Monostyla lunaris

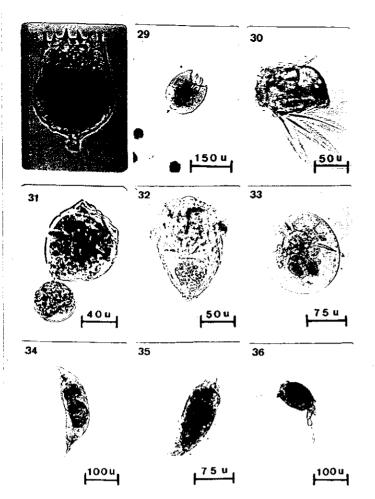


Plate 7. 大甲溪上游動物性浮游生物 圖片(IV)

- 28. Notholca sp.
- 29. Platyias quadricornis
- 30. Polyarthra sp.
- 31. Pompholyx sulcata
- 32. Synchaeta sp.
- 33. <u>Testudinella patina f. triloba</u>
- 34. Trichocerca capucina
- 35. Trichocerca similis
- 36. Trichotria tetractis

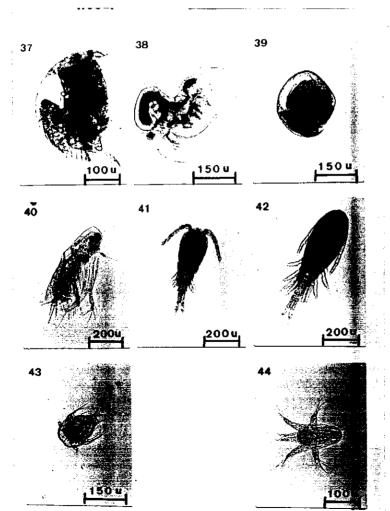


Plate 8. 大甲溪上游動物性浮游 生物圖片(V)

- 37. Alona sp.
- 38. Bosmina sp.
- 39. Chydorus sphaericus
- 40. Diaphanosoma sp.
- 41. Cyclops sp.
- 42. Cyclopoida
- 43 Nauplius
- 44. Nauplius

Table 1. The temporal variation in the relative abundance(%) of the species of phytoplankton at Te-Chi station in Ta-Chia River.

Taxa	('86) Oct. 21	Nov.	Dec.	Dec. 22	('87) Jan. 12	reu. 5	Feb.	Mar. 20	Αρπ. 6	Apr. 27	May 18	Jun. 9	Jun. 26	Number of appeared	time	s
Chlorophyta									9 01	2 65	12 75	7 71	8.06	12	,	
Actinastrum hantzschii			78.63	76.71	41.53	6.74	2.59	1.11	2.01	2.03	15.13	, , , .	3.33	1		
Coelastrum sp.	1.22													2		
Coelastrum sphaericum	19.51				1.98			40 05	20 27	01 15	61 77	77 7R	77 89	12		
Scendesmus sp.	51.22	19.61			18.22	36.42	74.43	48.05	78.33	01.13	1.97	1 1.0	72.89 2.93	13		
Staurastrum sp.	3.65	9.80	19.66	5.02	0.28	0.63	0.49	1.86	0.38	0.57	2.94			7		
Tetraedron sp.							0.16	0.93	0.66	0.29	2.94	0.33	2.50	i		
Tetraedron minimum	1.22															
Chrysophyta											0.20	0.28		2		
Achuanthes sp.											0.20			2		
Cocconeis sp.									12 70	11 10			9.16	ğ		
Cyclotella sp.					20.90	30.74			13.79	11.18	14.90	0 50	0.37	3		
Cymbella sp.							0.16					0.20	0.5.	ĩ		•
Eunotia sp.		3.92								0.07		1.38	:	3		
Comphonema sp.	1.22									0.07		0.28		ž		
Melosira sp.							0.16						0.37	. 6		
Navicula sp.						0.42				0.22		0.20	. 0.57	. 5		
Nitzschia sp.				0.91		18.53				7 01	E 70	1.93	2.93	11.		
Rhizosolenia sp.	4.88				12.15			5.57	3.85					7		
Synedra acus			0.85	ı	0.28					0.79		V.33	0.73	, 6		
Synedra ulna	17.07		0.85	+	-0.14	0.63	0.16			0.07				•		
Cryptophyta												1.93	1	. 1		
Cryptomonas sp.												1.73	, 			
No. of species appeared								_			•	14	. 9	*		
per sampling date	8	4	1	5 .	9	9	11	7	7	10	9	14	7			,

Table 2. The temporal variation in the relative abundance(%) of the species of phytoplankton at Yu-Non station in Ta-Chia River.

Taxa	('86) Oct. 21	Nov. 12	Dec. 2	Dec. 22	('87) Jan. 12	Feb.	Feb. 23	Mar. 20	λpr. 6	Apr. 27	May 18	Jun. 9	Jun. 26	Number of times appeared
Chlorophyta Actinastrum hantzschii	91.62	19.21	82.35	57.14	15.55	45.31	24.30	24.44	20.77	37.68	52.90 0.25	21.39	75.49	13 1 2
Characium sp. Coelastrum sp. Coelastrum sphaericum Scendesmus sp. Staurastrum sp.	2.39	2.07 54.99 1.88		7.94			63.49 0.32 0.13	1.17	27.15	0.79		1.04	4	1 11 13 7
Tetraedron sp. Chrysophyta Achnanthes sp. Cocconeis sp. Cyclotella sp. Cymbella sp.		0.38		1.59		0.48 26.65	0.32	0.11	25.94	13.04		0.17 0.17 12.44 0.17	0.11 8.71	4 5 9 5 1
Eunotia sp. Melosira sp. Navicula sp. Nitzschia sp. Rhizosolenia sp. Synedra acus	0.16 0.16 1.75	1.51 0.57 0.57	0.98	15.87	14.05 12.86 7 11.96 0.60 5.68	12.84 7.27 0.97	0.89	0.53 5 2.8 3 0.2	2 3 7 5.3 L 0.9	1 2.90	1 2.27 1 1.76	1.16 0.99	0.23	1 10 8 12 12
Synedra ulna Cryptophyta Cryptomonas sp.	0,96	18.46	, ,,,,,	, 	J, 00				•	9 1.4	2.77	34.16	0.23	5
No. of species appeared per sampling date	9	10	4	5	10	10	12	13	9	11	13	- 11	11	

Table 3. The temporal variation in the relative abundance(%) of the species of phytoplankton at Sung-Mou station in Ta-Chia River.

Date

Taxa	('86) Oct. 21	Nov. 12	Dec. 2	Dec. 22	('87) Jan. 12	Feb.	Feb. 23	Mar. 20	Apr.	Apr. 27	May 18	Jun. 9	Number of appeared	times
Chlorophyta												43.00	12	
Actinastrum hantzschii	6.07	26.15	76.82	43.82	30.80	54.67	18.52	15.85	20.00	70.74		43.90	1 2	
Characium sp.											0.22		1	
Coelastrum sphaericum		8.08							1	•			3	
Scendesmus sp.	0.83	6.92	8.47										3	
Staurastrum sp.	0.83	7.31	4.90										3	
Chrysophyta												1 63	o	
Achnanthes sp.				1.06	4.99	3.33	11.11		3.33			1.63	9	
Cocconeis sp.				1.41	3.61	2.00	2.78	2.46	16.67			2.85	4	
Cyclotella sp.				29.68		1.33			3.33				11	•
Cymbella sp.	1.19	1.15		2.47	3.88	3.33			16.67			15.85	11	
Diatoma sp.									6.67	5.85	27.13	9.35	7	
Eunotia sp.	1.07	0.38		1.06		1.33		1.76			0.44	2.03	,	
Fragilaria sp.				3.89	0.83	12.67							11	
Gomphonema sp.	2.14	1.54	0.27	1.41	4.99	7.33	2.78	4.58		4.26	5.25	6.10	9	
Melosira sp.				3.18	18.03	8.00	8.33	5.28	-10.00		12.91		-	
Navicula sp.	12.38	15.38	1.63	3.53	12.33		1.85		23.33	4.26	10.72		10	
Nitzschia sp.		25.00		1.41	5.55	0.67	0.93	4.58			7.22	3.66	10	
Rhizosolenia sp.	3075.		0.54									100	1	
Surirella sp.			• • • •		0.28				,				1	
Synedra acus		0.77	3.27	1.77				0.70					11	
Synedra ulna	18.57			5.30	14.70	5.33	3.70	7.75		1.06	16.41	2.44	11	
Cryptophyta	20.0	. , , ,												-
Cryptomonas sp.	0.24												1	• •
cryptomonds sp.										_~				
O. of species appeared	• •			. 13	11	11	10	11	8	10	12	11		
per sampling date	10	11	9	13	TY	1.1	7.0	**	•					

Table 4. The temporal variation in the relative abundance(%) of the species of phytoplankton at Chung-Hsing station in Ta-Chia River.

Date

Taxa	('86) Oct. 21	Nov. 12	Dec. 2	Dec. 22	('87) Jan. 12	Feb.	Feb. 23	Mar. 20	Number of times appeared
Chlorophyta									a
Actinastrum hantzschii	31.03	12.60	38.46	38.60	43.84	2.76	43.78		8
Characium sp.								1.40	1 2
Coelastrum sp.	6.90			0.88					. 2
Chrysophyta									6
Achnanthes sp.		0.61			10.96			10.23	5
Cocconeis sp.				2.63	2.74	7.59	1.29	6.51	3
Cyclotella sp.						_		0.47	7
Cymbella sp.	13.79	66.87	5.77	5.26		17.93	18.45	13.49	,
Diatoma sp.			5.77			10.35		15.81	3
Eunotia sp.	15.52			1.75		0.69		3.26	2
Fragilaria sp.		1.02	19.23	14.03					3
Gomphonema sp.		5.69		2.63	2,74	11.03		2.79	b a
Melosira sp.	1.72	4.67	7.69	17.54	1.37				8
Navicula sp.	3.45		15.38	7.89	9.59			24.19	8
Nitzschia sp.	25.86	2.64		1.75		1.38	3.00	0.93	0
Rhizosolenia sp.					1.37				1
Surirella sp.			3.85				_		i
Synedra ulna	1.72	2.44	3.85	4.39	2.74	13.79	6.01	2.79	B
lo. of species appeared per sampling date	8	10	8	12	10	11	10	13	

CO

Table 5. The temporal variation in the relative abundance(%) of the species of phytoplankton at Ping-Teng station in Ta-Chia River

Date

Taxa	('86) Oct. 21	Nov.	Dec.	Dec. 22	('87) Jan. 12	Feb. 5	Feb. 23	Mar. 20	Λpr.	Apr. 27	May 18	Jun. 9	Jun. 26	Number of appeared	times
Chlorophyta Actinastrum hantzschii Characium sp. Coelastrum sp.	3.01		52.77	40.00	81.52	94.49	82.35	56.79	48.15	15.08	29.45	40.70	48.89	12 1 1	
Chrysophyta Achnanthes sp. Cocconeis sp.			1.70		2.17	0.87 0.58			11.11		1.28	2.19		10 8 2	
Cyclotella sp. Cymbella sp. Diatoma sp.	24.81	64.14		10.00	l		0.74		7.41 3.70	32.08	13.57	7.22 10.94	2.22 24.44	9	
Eunotia sp. Gomphonema sp.	13.53 7.52	3.54			5.44	1.16	0.74	7.41		20.76	0.51 13.57 11.78	2.63	4.44	11. 13	.
Melosira sp. Navicula sp. Nitzschia sp.	15.04 27.82		14.89 6.38	15.00 10.00	1.09		2.21		18.52	1.89 5.66				11 10 2	
Synedra acus Synedra ulna	8.27	10.10	0.43 3.40		6.52	2.03	1.47	6.17	-	1.89		8.97 		10	
o. of species appeares per sampling date	7	6	11	8	6	6	9	7	8	11	13	11	8		

Table 6. The temporal variation in the relative abundance(%) of the species of phytoplankton at Wu-Ling station in Ta-Chia River.

							Date		•					
Taxa	('86) Oct. 21	Nov. 12	Dec. 2	Dec.	('87) Jan- 12	Feb.	Feb.	Mar. 20	Apr.	Apr. 27	May 18	Jun . 9	Jun. 26	Number of times appeared
Chlorophyta Actinastrum hantzschii		1.57	86.58	75.61	79.43	32.26	13.07	61.22		16.69	26.47	16.67 0.53	20.22	11
Characium sp. Chrysophyta Achnanthes sp. Cocconeis sp.	10.64	4.41	1.73	2.44			4.58	5.10 6.12	3.57	0.12	1.72	0-67 5-07		9 7 12 8
Cymbella sp. Diatoma sp. Eunotia sp. Fragilaria sp.	2.13	3.15 0.47 15.75	3.46	1.22	5.67			8.16	33.93	7.05	6.65	0.40 5.34 25.21	2.25	7 1 11 11
Gomphonema sp. Melosira sp. Navicula sp. Nitzschia sp.	29.79 29.79	64.25	3.03 3.03	3.60	5 5.67	19.35 11.29 4.84	7.84	4.08 3.06 3.06	39.29	2.84 12.98 0.3	7,68)	13 11 .3 12
Synedra acus Synedra ulna No. of species appeared per sampling date	12.77 6	5.67 	7 0.8°	7 8	2.84 7	20.97	10	10	8	12	11	13	9	,

Table 7. Occurrence (number of times appeared) and distribution of phytoplankton in Ta-Chia River from Oct. 21, 1986 to Jun. 26, 1987.

			Sta	tions			NO. of stations
Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling	at which the species appeared
Chlorophyta							
Actinastrum hantzschii	12	13	12	8	12	11	6
Characium sp.		1	1	1	1	1	5
Coelastrum sp.	1	2		2	1		4
Coelastrum sphaericum	2	1	1				3
Scendesmus sp.	12	11	3				3
Staurastrum sp.	13	13	3				3 2
Tetraedron sp.	7	7					
Tetraedron minimum	1						1
Chrysophyta		•					,
Achnanthes sp.	2	4	9	6	10 8 2	9	6
Cocconeis sp.	$\bar{2}$	5	. 9	5	8	7	6
Cyclotella sp.	9	9	4	1	2		5
Cymbella sp.	3	5	11	7	9	12	6
Diatoma sp.	_		6	5	5	8	4
Eunotia sp.	1	1	7	6	6	7	. 6
Fragilaria sp.	-		3	3		1	6 3 5
Gomphonema sp.	3		11	6	11	11	5
Melosira sp.		1	9	8	13	11	6
	2 6 5	10	10	8	11	13	6
Navicula sp.	š	8	10	6	10	11	6 4
Nitzschia sp.	11	12	1	1			
Rhizosolenia sp.			1	1			2
Surirella sp.	7	12	4	8	2	, 3	0
Synedra acus	, 6	11	1 i	-	10	12	· 5
Synedra ulna	J	**					
Cryptophyta	. 1	5	1				3
Cryptomonas sp.							
otal no. of species					1.5	1.4	
appeared per station	20	19	21	17	15	14	

Sorensen coefficient of community similarity for phytoplankton

	community a	it six star	community at six stations in Ta-Chia River.	Chia River.		
	Te-Chi Yu-Non	Yu-Non	Sung-Mou	Chung-Hsing	Ping-Teng Wu-Ling	Wu-Ling
Te-Chi	•					
Yu-Non	0.92	ı				,
Sung-Mou	0.83	0.85	1			
Chung-Hsing	0.70	0.78	0.89	1		
Ping-Teng	0.74	0.77	0.83	0.94	1	
Wu-Ling	0.65	0.79	0.80	0.90	0.90	

Table 9. The temporal variation in the relative abundance(%) of the species of zooplankton at Te-Chi station in Ta-Chia River.

Dato

						Data									
Taxa	('86) Oct. 21	Nov. 12	Dec.	Dec.	(187) Jan. 12	Feb. 5	Feb. 23	Mar. 20	Apr.	Apr. 27	May 18	Jun. 9	Jun . 26	Number of appeared	times
· · · · · · · · · · · · · · · · · · ·	*													1	
Arcella sp.	0.55 11.71	6.32	1.98	1.77	0.93	3.95	3.06	4.05	1.48	2.78	10.55	26.27 0.01	19.25	13	
Ceratium hirundinella Ciliata Difflugia sp.	0,14	.,		0.02		0.31	n a n	0.28	0.12	0.17		0.01	0.01	5 7 1	•
Echinosphaerium sp.											0.006	72.07	70 B7	13	
Euglena sp. Peridinium	86.05	92.33	97.71	97.21	97.44 1 0.01	0.31	93.81 0.18	93.76	97.74	96.85	0.02	12.91	0.03	10	
Tintinnidium stratera			0,00								0.02		0.01	4 9	
otifera Asplanchna Sp.				0.002	0.002	0.49	0.10		0.01	0.01		0.05	0.03	9	
Collotheca mutabilis		0.00		0.000	0.002		0.15	0.01	0.01		0.00	0.08	0.05	7	
Collotheca pelagica	0.01	0.09		0.23	0.02		0.10				0.00	0.02	• • • •	1 2	
Conochilus unicornis Euchlanis ap.						0.75							0.03	. 2	
Euchlanis alata	0.14		0.02		0.01	0.07	0.10	0.13	0.01			0.02	0.02	•	
Keratella cochlearis var.			0.04		0.01					0.03	0.10	0.06	0.34	13	
tecta Keratella cochlearis var.	0.28	0.50	0.10	0.13	0.10	0.31	0.81	1.30	0.06	0.03	0.10				•
tecta f. microcantha												0.01		i	
Lepadella ovalis													0.01	i	
Monostyla lunaris	0.55								0.00	,	0.00	3 0.03		3	
Notholca sp. Notholca laurentiae									0.00	•				ii	
Polyarthra sp.	0.28	0.09	0.02	0.36	1.30	0.81	0.88	0.03	0.00	6 0.01	0.25	0.0	0.04	î	
Polyarthra trigla			0.02	0.50	2.00					0.04	0.11	0.03		11	
Rotaria sp.	0.14	١	0.01				0.26	0.08			0.1.	0.0	0.01	1	
Synchaeta sp. Trichocerca capucinus			0.01			0.19	ì	0.07			0.02			14	
Trichocerca similis	0.28	0.4	2 0.03	0.04	0.02	0.07			0.00	12		0.0	0.01		
Trichotria tetractis								0.01	0.28	0.01	0.00	16		9	
Cladocera Bosmina longirostris			0.01	0.01	0.00	,		0.01	0.20						
Chydorus 8p.					0.00	2						0.0	l .	•	•
Diaphanosoma sp.											0.0	3.0.0	1	1	•
Copepoda	0.1	4	0.0	0.02				5 0.03			0.0	0.2	9 0.23	1	2
Cyclopeida Nauplius	0.9		6 0.0	2 0.10	0.13	1.4	3 0.01								
No. of species appeared per sampling date		 2 7	11	14	15	14	12	13	16	11	17	19	17	, e e	

Table 10. The temporal variation in the relative abundance(%) of the species of zooplankton at Yu-Non station in Ta-Chia River.

Date (187) (186) Number of times Jun. Apr. May Jun. Oct. Nov. Dec. Dec. Jan. Feb. Feb. Mar. Apr. appeared 27 18 9 26 23 20 6 12 2 22 12 5 21 Taxa Protozoa 0.004 0.19 0.005 0.13 0.27 0.08 0.006 Arcella sp. 3 0.002 0.05 0.05 Astramoeha radiosa 13 3.13 2.31 1.66 2.41 10.91 14.93 25.11 1.42 2.26 1.21 1.73 Coratiom hirundinella 5.08 4.13 11 0.03 0.34 0.006 0.02 0.27 3.07 2.85 0.33 0.02 9.007 8.21 Difflugia sp. 0.04 0.08 0.05 0.003 0.002 0.003 13 Echinosphaerium sp. 92.15 81.73 98.32 95.34 93.12 93.37 91.02 96.40 97.80 97.24 88.18 B4.62 73.48 Peridinium 0.01 0.13 0.13 0.04 0.02 0.16 Tintinnidium strateca 0.002 Vorticella sp. Rotifera 0.004 Anumaeopsis sp. 0.008 0.05 0.01 0.006 0.004 0.04 Asplanchna sp. 0.02 Brachionus diversicornis 0.05 Cephalodella gibba 0.003 0.01 0.10 0.04 0.10 Collotheca mutabilis 0.004 0.007 0.006 0.11 0.02 0.04 Collotheca pelagica 0.004 Colurella uncinata 0.003 0.03 0.004 0.03 0 11 0 13 0 07 0 02 0 002 Conochilus unicornis 0.05 Dinleuchlanis propatula 1 0.002 Euchlanis sp. 11 0.05 0.007 0.01 0.04 0.02 0.23 Keratella cochlearis var. 0.02 tecta 13 0.13 0.10 0.45 1.86 0.59 0.09 0.07 0.23 0.61 0.07 0.19 0.26 0.28 Keratella cochlearis var. tecta f. microcantha 0.03 Lecane stichaea 0.05 Lepadella ovalis 0.02 Lepadella patella 3 0.002 0.02 0.28 Monostyla lunaris: 2 0.01 0.03 Nothelca labis 4 0.25 0.32 1.24 1.16 Polyarthra sp. 9 0.08 0.05 0.08 1.02 0.14 0.13 0.10 0.93 0.04 Polyarthra trigla 1 0.004 Pompholyx sulcata 2 0.14 Rotaria sp. 0.02 0.32 0.08 0.55 0.09 0.45 1.38 0.19 0.08 0.06 0.08 0.006 0.04 13 Synchaeta sp. 2 0.02 0.004 Testudinella patina f. triloba 9 0.02 0.004 0.01 0.006 0.02 0.32 0.02 0.06 0.02 Trichocerca capucinus 13 0.12 0.29 0.07 0.02 0.01 0.09 0.03 0.08 0.34 0.56 0.01 0.34 0.06 Trichocerca similis 2 0.006 0.03 Trichotria tetractis Cladoceta 0.03 Alona guttata 0.02 0.00B 8 0.03 0.04 0.02 0.003 0.11 0.09 Bosmina longirostris 2 0.002 0.02 Diaphanosoma sp. Copepuda 0.006 0.05 0.01 11. 0.01 0.03 0.10 0.07 0.005 0.003 Cyclopoids 13 0.03 0.04 0.02 0.04 0.15 0.40 0.37 0.32 0.35 0.25 Nauplius No. of species appeared 13 17 16 15 15

15

15

per sampling date

22

15

19

Table II. The temporal variation in the relative abundance(%) of the species of zooplankton at Sung-Mou station in Ta-Chia River.

Date

Taxa.	(*86) Oct. 21	Nov. 12	Dec. 2	Dec. 22	(187) Jan. 12	Feb. 5	Feb. 23	Max. 20	Λρπ. 6	Apr. 27	May 18	Jun . 9	Number of appeared	times
rotosoa		_~									1.32		4	
Arcella sp.	0.01	0.13		42.86							1.32		3	*
Astramocha radiosa		0.001				28.89	10.24						3	
Ceratium birondinella	2.06	2.04	1.14										1	
Ciliata	0.006									10 11	24 64	E4 07	11	
Difflugia sp	0.01	0.08	0.004	1	85.11	44.44	73.23	61.00	1.82	10.12	47.04	34.07	12	
Peridinium	97.56	97.09	98.64	42.86	7.45	13.33	5.51	36.10	98.04	69.00	02.20	33.31	2	
Tintinnidium stratera	0.006	0.01											-	
ntifera													1	
Anuracopsis sp.	0.10												2	
Asplanchna sp.		0.002	2										i	
Collotheca mutabilis			•		7.45								†	
Colucella uncinata		0.002	,										i	
Congchilus unicornis			0.10										*	
	0.005	0.007	0.00	1									2	
Euchlanis sp.	0.000		0.00										4	
Keratella cochlearis var.		0.001	. 0.00	•									_	
tecta	0.03	0.02	0.00										3	
Keratelia cochlearis var.	0.03	0,04	V.u0	,										
tecta f. microcantha													1	
Lecano luna		0.003	3										2	
Lepadella acuminata	0.03	0.01									0.33	5.29	4,	
Lepadella ovalis	_		0.00	ŗ									2	
Manfredium eudactylotum	0.002	0.00	2				5.51						1	
Monostyla sp.							3.71				0.66	5.29	4	
Monostyla lunaris	0.005	0.25											· 1	
Platylas guardricornis		0.00	2										1	
Polyarthra sp.	0,10												2	
Polyarthra trigla		0.05	0.01										. 3	
Rotaria sp.						13.33	5.51	2.91			0.33	,	. 2	
Squatinella sp.		0.00	1								0.33	•	. 3	
Synchaeta sp.	0.000	0.00	5 0.01										ž	
Testudinalla patina f.		0.02		14.29	•								•	
triloba													1	
Trichocerca capucinus									0.14	1			4	
Trichocerca similis	0.03	0.04	0.00	1							0.33	,	4	
	0.03	••••		-									1	
ladocera		0.00	3							•			1	
Alona affins		0.00											1	
Chydorus sp.		Q . 1/1/	•											
Copepoda	0.00	2 0.01	0.02										3	
Cyclopaida			0.07										3	
Nauplius	0.02													
No. of species appeared	18	25	12	3	3	4	5	3	3	2	7	4		
per sampling date	10	~ .		-										

Table 12. The temporal variation in the relative abundance(%) of the species of zooplankton at Chung-Hsing station in Ta-Chia River.

Taxa	('86) Oct. 21	Nov. 12	Dec.	Dec. 22	('87) Jan. 12	Feb.	Feb. 23	Mar. 20	Number of times appeared
						•			3
Protozoa Astramoeba radiosa						2.36		0.21 0.07	5
Ceratium hirundinella	1.74		0.18		0.57				7
Difflugia sp.		7.50	0.18	5.26	2.05	2.36	7.20	0.07	i
Echinosphaerium sp. Peridinium	89.54	65.23	99.27	94.74	96.77	94.24	89.45		8
Rotifera									2
Cephalodella gibba	0.61	4.55							1
Euchlanis sp. Keratella cochlearis var.		10.68					0.69		1
tecta									1
Lepadella patella		7.50			0.31				1
Monostyla lunaris					0.31			•	2
Polyarthra sp.	1.13	1 50	0.10	ı	0.54	ı		0.13	4
Rotaria sp.	1.74	1.59	0.10	,				0.07	1
Trichocerca capucinus Trichocerca similis	4,62	2.96	0.18	3				0.07	4
Copepoda Nauplius	0.61	<u> </u>				,			1
No. of species appeared per sampling date	. 7	7	5	2	5	4	4	8	

Table 13. The temporal variation in the relative abundance(%) of the species of zooplankton at Ping-Teng station in Ta-Chia River.

							Date							
Taxa	(†86) Oct. 21	Nov.	Dec.	Dec. 22	('87) Jan. 12	Feb. 5	Feb.	Mar. 20	λpr. 6	Арг. 27	Мау 18	Jun. 9	Jun. 26	Number of times
rotozoa												•		1:
Arcella sp.							9.85							3
Astramoeba radiosa						13.64	14.60	6,52				3.01	2,42	3
Ceratium hirundinella					3.00	. 0.0	CE 60	47 93	6.12	9 91	70.94	2.65		1 1
Difflugia sp.			65.00		30.91	74.74	0 115	47.88 45.60	93 88	90.09	16.56			11
Peridinium		7,53	35,00		60.09	14.24	7,11,	45,00	,,,,,,	,,,,,		•		
otifera													0.85	1
Brachionus urceolaris	100.00													<u>1</u>
Cephalodella gibba	100.00	35.48										0.23		4
Euchlanis sp. Keratella cochlearis var.		33.10				6.06								1
tecta f. microcantha														1
Lecane flerilis											2.19		0.85	1
Lecane stichaea												0.23	0.03	· Î
Lepadella ovalis												0.23		2
Lepadella patella		35.58	l .			•					6.25			3
Monostyla lunaris											4.06			3
Rotaria sp.		7.53	1		•						4.00	0		1
Synchaeta sp.				100.0	0							0.36		1
Trichocerca capucinus													0.85	1
Trichocerca similis														

Table 14. The temporal variation in the relative abundance(%) of the species of zooplankton at Wu-Ling station in Ta-Chia River.

							Date			•				
Таха	('86) Oct. 21	Nov. 12	Dec. 2	Dec. 22	(†87) Jan. 12	Feb.	Feb.	Mar. 20	Apr. 6	Apr. 27	May 18		Jun. 26	Number of times appeared
Protozoa Arcella sp. Astramoeba radiosa	20.59					15.65	68.87	0.96		0.2	ī	1.15	5	1 4 2
Ceratium hirundinella Difflugia sp. Peridinium	58.82 20.59	65.85	100.00	15.5 84.4	2 15.39 8 80.77	42.61 38.26	12.26 18.87	57.77 38.51	100.00	0.1	3 56.60 3 27.27	11.20 82.89	25.00 66.75	11 12
Rotifera Cephalodella gibba Euchlanis sp.		17.0	7								2.05 2.05 2.05	2.3		2 2 1 1
Lepadella ovalis Monostyla sp. Monostyla lunaris Rotaria sp.		17.0	7		3.85	,				0.0	7.92 2.05 8	1.7		3 4 1
Trichocerca similis Cladocera Bosmina longirostris			~~=~==							0.0	5			1
No. of species apported per sampling date	3	3	1	2	3	3	3	4	1	5	7	6	4	

Table 15. Occurrence(number of times appeared) and distribution of zooplankton in Ta-Chia River from Oct. 21, 1986 to Jun.26,1987.

			Station	ıs			No. of stations		
Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling	at which the species appeared		
							5		
Protozoa Arcella sp.	1	7	4.		1	. 1 4	5		
Astramoeba radiosa		2	3	3	3	2	6		
Ceratium hirundinella	13	13	3	5	3	2	ž		
Ciliata	1		1	7	11	11	6		
Difflugia sp.	5	11	11	í			3		
Echinosphaerium sp.	7	6		•			1		
Suglena sp.	1	13	12	9	11	12	6		
Peridinium Sp.	10	6	2				3		
Tintinnidium stratera	10	1					. 1		
Vorticella sp.		-					2		
Rotifera		1	1				3		
Anuraeopsis sp.	4	6	2				1		
Asplanchna sp. Brachionus diversicornis	•	1			_		1		
Brachionus urceolaris				_	1	2	4		
Cephalodella gibba		1		2	1	2	3		
Collotheca mutabilis	9	5	1				2		
Collotheca pelagica	9	6				•	2 2		
Columella uncinata		1	-				3		
Conochilus unicornis	7	9					1		
Dipleuchlanis propatula		1	3	1	2	2	6		
Euchlanis sp.	1	1	د	-	~	•	1		
` Euchlanis alata	2						-		
Keratella cochlearis var.	7	11	2	1			4		
tecta	,		-						
Keratella cochlearis var.	13	13	3		1		4		
tecta fi microcantha					1		1		
Lecane flerilis			1				1 1		
Lecane luna					_	1	2		
Lecane ovalis		1			1		1		
Lecane stichaea Lepadella acuminata			2				4		
Lepadella ovalis	i	1	4		1		3		
Lepadella patella		7		1	2		1		
Manfredium eudactylotum			2			1	2		
Monostyla sp.		_	Ī		3	3	6		
Monostyla lunaris	1	3	4	1	3	د	ì		
Notholca sp.	l	_					i		
Notholca labis	_	2					1		
Notholca laurentiae	3		•				1		
Platyies quardricornis	~		1	2			4		
Polyarthra 3p.	2	4	2	-			3		
Polyarthra trigla	11	1	2				1		
Pompholyx sulcata	1	2	3	4	3	4	.6		
Rotaria sp.	1		ž				1 4		
Squatinella sp.	11	13	1		<u>1</u>		4		
Synchaeta sp.							3		
Testudinella patina f.		2	3				2 S		
triloba Trichocerca capucinus	7	9		ì	i	-	6		
Trichocerta similis	12	13	4	4	1	1	2		
Trichotria tetractis	4	2					. 4		
Cladocera							1		
Alona affins			ì				ì		
alona buttata		1				1	3		
Bosmina longirostris	5	3				•	2		
Chydorus sp.	1		i				2		
Diaphanosoma sp.	1	2							
Copepoda		13	3				3		
Cyclopoida	13	13					. 4		
Nauplius									

Total no. of species 31 18 33 15 18 13 appeared per station 31 18 33 15 18 13

Table 16. Sorensen coefficient of community similarity for zooplankton community at six stations in Ta-Chia River.

ı	Te-Chi	Yu-Non	Sung-Mou	Chung-Hsing	Ping-Teng	Wu-Ling
Te-Chi	-					
Yu-Non	0.72	-				
Sung-Mou	0.69	0.68	_			
Chung-Hsing	0.52	0.57	0.50	-		
Ping-Teng	0.49	0.57	0.51	0.79	-	
Wu-Ling	0.45	0.47	0.48	0.71	0.71	-

Table 17. The correlation between the abundance of phytoplankton or zooplankton and the environmental factors in upper Ta-Chia River. The data of all stations and sampling dates are used for the analysis.

Correlation coefficient(r)

Variable	phytoplankton	zooplankton
Phytoplankton		0.005##
abundance		0.305**
Temperature	0.394***	0.321**
Dissolved oxygen	-0.076	-0.454***
рН	0.386***	-0.039
Conductivity	-0.166	0.410***
Hardness	-0.098	-0.015
Calcium	-0.182	0.023
Alkalinity	-0.156	0.271*
COD	0.037	0.496***
Suspended solid	0.182	0.530***
Turbidity	0.352**	0.952***
Ammonia-N	0.207	0.817***
Nitrite-N	0.299*	0.666***
Nitrate-N	-0.024	0.176
Orthophosphate-P	0.179	0.902***
Total phosphorus	0.001	0.274*
Sulfide	-0.142	0.127
Silica	-0.037	0.258*
Chlorophyll a	-0.029	0.426***

^{*}P \leq 0.05; **P \leq 0.01; ***P \leq 0.001

Table 18 The correlation between the spatial variation of abundance of phytoplankton or zooplankton and the environmental factors for 6 stations(sample size=6) in upper Ta-Chia River. The values of abundance of phytoplankton or zooplankton, and of environmental factors are based on the average over whole study period for each station.

Correlation coefficient(r)

Variable	phytoplankton	zooplankton
Phytoplankton		
abundance		0.111
•• ·	0.809	0.111
Temperature	-0.455	-0.599
Dissolved oxygen	0.868*	-0.207
pH gamanasinden	-0.686	0.456
Conductivity	-0.137	0.725
Hardness	0.044	0.661
Calcium	-0.684	0.053
Alkalinity	-0.045	0.760
COD	0.219	0.982***
Suspended Solid	0.104	0.996***
Turbidity	0.382	0.949**
Ammonia-N	0.515	0.809
Nitrite-N	-0.082	0.102
Nitrate-N		0.974***
Orthophosphate-P	0.029	0.112
Total phosphorus	-0.210	
Sulfide	-0.517	-0.101
Silica	0.127	0.814*
Chlorophyll a	-0.304	0.738

^{*}P < 0.05; **P < 0.01; ***P < 0.001

Table 19. The correlation between the temporal variation of abundance of phytoplankton or zooplankton and the environmental factors for 13 sampling dates in upper Ta-Chia River. The values of abundance of phytoplankton and zooplankton, and of environmental factors are based on the average of 5 stations for each sampling date.

Correlation coefficient(r)

Variable	phytoplankton	zooplankton
Phytoplankton		•
abundance		0.048
Temperature	0.418	0.460
Dissolved oxygen	0.188	-0.127
pH Hq	0.634*	0.139
Conductivity	-0.275	0.683*
Hardness	-0.103	-0.141
Calcium	-0.424	-0.053
Alkalinity	-0.455	0.543*
COD	-0.309	0.600*
Suspended solid	-0.693**	0.213
Turbidity	-0.011	0.957***
Ammonia-N	-0.322	0.538
Nitrite-N	0.182	0.437
Nitrate-N	0.206	0.539
Orthophosphate-P	-0.138	0.825***
Total phosphorus	-0.054	0.863***
Sulfide	-0.422	0.615*
Silica	-0.084	-0.182
Chlorophyll a	-0.310	0.829***

^{*}P \leq 0.05; **P \leq 0.01; ***P \leq 0.001

Appendix 1. The temporal and spatial variation in the species diversity of phytoplankton in Ta-Chia River. SN: Species number; DI: Diversity index, D.

Dat	:e	Parameter	Chi	Yu- Non	Mou	Chung- Hsing	Ping- Teng	ьтид
1986						,	7	6
Oct.	21	SN	2 01	ባ 63	1 93	8 2.48	2.54	2.29
	1.3		2.01	10	11	10	6	9
Nov.	12	SN	1 26	1 94	2 78	1.79	1.72	1.77
D	2	DI SN	1.30	4	9	8	11	6-
Dec.	2	DI	11 10 95	0.81	1.36	2.52	2.35	0.00
	22	SN	5	5	13	12	8	8
Dec.	22	DI	1.18	ĭ.71	2.41	2.76	2.58	1.43
1987								
Jan.	12	SN	9	10	11	10	6	7
		DΙ	2.19	2.79	2.85	2.41	1.08	1.22
Feb.	5	CN	n	10	11	11	6	8
	-	DI	2.15	2.17	2.30	3.13	0.43	2.54
Feb.	23							
		DI	1 77	1.55	2.60	2.51	$\frac{1}{2}.17$	2.04
Mar.	20	CN	7	13	11	13	,	r O
		DI	1.64	2.16	2.82	3.13	2.07	2.13
Apr.	6	SN	7	9	8		5	0
		DI	1.09	2.46	2.74			2.23
Apr.	27	SN	10	11	10			12
,		DI	1.05	2.07	1.67		2.84	
May	18	SN	9	13	12		13	11
		DI	1.75	2.09	3.01		2.98	
Jun.	9	SN	14	14	7.7			13
	_	DΙ	1.54	2.38	2.66		2.52	2.94
Jun.	26	SN	9	11			8	9
	, -	DI	1.49	1.23			2.16	2.73

Appendix 2. The temporal and spatial variation in the species number of the groups of phytoplankton in Ta-Chia River.

S	t.	a	t	i	n	n	s

Date		Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling
1986								
Oct.	21	Chlorophyta	5 ·	, 4	3	2	1	0
		Chrysophyta	3	5	6	6	6	6
		Cryptophyta	0	0	1	0	0	0
Nov.	1.2	Chlorophyta	3	4	4	1	1	1
		Chrysophyta	1	6	7	9	5	8
		Cryptophyta	0	0	0	0	0	0
Dec.	2	Chlorophyta	2	2	3	1	1	1
		Chrysophyta	2	2	6	7	10	5
		Cryptophyta	0	0	0	0	0	0
Dec.	22	Chlorophyta	3	2	1	2	1	1
	-	Chrysophyta	2	3	12	10	7	7
		Cryptophyta	0	0	0	0	0	0
1987		12						
Jan.	12	Chlorophyta	4	3	1	1	1	1
• • • • • • • • • • • • • • • • • • • •		Chrysophyta	5	7	10	9	5	6
		Cryptophyta	0	0	0	0	0	0
Feb.	5	Chlorophyta	3	3	1	1	1	1
	-	Chrysophyta	6	7	10	10	5	7
		Cryptophyta	0	0	0	0	0	0
Feb.	23	Chlorophyta	4	4	1	1	1	1
		Chrysophyta	7	8	9	9	8	9
		Cryptophyta	0	0	0	0	0	0
Mar.	20	Chlorophyta	4	5	1	2	1	l
		Chrysophyta	3	8	10	11	6	9
		Cryptophyta	0	0	0	0	0	0
Apr.	6	Chlorophyta	4	4	1		1	0
ηpr.	Ŭ	Chrysophyta	3	4	7		7	8
		Cryptophyta	Ō	1	0		0	0
Apr.	27	Chlorophyta	4	4	1		l	1
npr.		Chrysophyta	6	6	9		10	11
		Cryptophyta	0	1	0		0	0
May	18	Chlorophyta	4	5	2		1	1
nay	10	Chrysophyta	5	7	10		12	10
		Cryptophyta	ō	1	0		0	0
Jun.	9	Chlorophyta	4	4	1		i	2
oun.	7	Chrysophyta	ġ	9	10		10	11
		Cryptophyta	í	í	0		0	0
Jun.	26	Chlorophyta	â	4	- -		2	1
oun.	20	Chrysophyta	5	Ġ		-	6	8
		Cryptophyta	0	ĭ			0	0
		Cryptophyta					·	·

Appendix 3. The temporal and spatial variation in the abundance(No./L) of the groups of phytoplankton in Ta-Chia River.

		Te-	Yu-	Sung-	Chung-	Ping-	Wu-
Date	Taxa	Chi	Non	Mou	Hsing	Teng	Ling
1986	al. 1 back a	11100.	106342.9	22904.8	3876.2	704.8	0.0
Oct. 21	Chlorophyta	3347.7	4228.6	272390.1	6343.0	22728.4	8280.9
	Chrysophyta	0.0	0.0	704.8	0.0	0.0	0.0
	Cryptophyta		110571.5	295999.7	10219.2	23433.2	8280.9
	Total	14447.7	73119.0	44407.6	10923.8	3171.4	1761.9
Nov. 12	Chlorophyta	8633.4	20438.2	47219.2	75762.0	31714.2	110119.0
	Chrysophyta	352.4	0.0	0.0	9.0	0.0	0.0
	Cryptophyta	0.0	93557.2	91626.8	86685.8	34885.6	111880.9
_	Total	8985.8	17442.9	58338.1	3523.8	21847.6	35238.1
Dec. 2	- -	20261.9 352.4	528.6	9.0	5638.2	19557.2	5461.9
	Chrysophyta		0.0	0.0	0.0	0.0	0.0
	Cryptophyta	0.0	17971.5	64680.9	9162.0	41404.8	40700.0
	Total	20614.3	50566.7	21847.6	7928.6	1409.5	10923.8
Dec. 22	Chlorophyta	35414.3	27133.3	28014.6	12157.2	2114.4	3523.9
	Chrysophyta	3171.4	0.0	0.0	0.0	0.0	0.0
	Cryptophyta	0.0	77700.0	49862.2	20085.8	3523.9	14447.7
	Total	38585.7	77700.9	4,002.2	200000		
1987		77247 E	13290.4	19557.1	5638.1	13214.3	19733.3
Jan. 12		77347.5	45633.2	44125.7	7223.8	2995.3	5109.6
	Chrysophyta	47395.1		9.0	0.0	0.0	0.0
	Cryptophyta	0.0	0.0	63682.8	12861.9	16209.6	29842.9
	Total	124742.6	58923.6	14447.6	704.8	57437.9	3523.8
Feb. 5		36647.6	35361.7	8633.5	24842.8	3347.7	7400.1
	Chrysophyta	47042.7	37352.3	0.0	0.0	0.0	0.0
	Cryptophyta	0.0	0.0	23081.1	25547.6	60785.6	10923.9
	Total	83690.3	72714.0	3523.8	17971.4	19733.3	21142.8
Feb. 23	3 Chlorophyta	84571.2	244375.6	15504.9	23080.9	4228.8	140599.7
	Chrysophyta	24314.4	32595.2	0.0	6.0	0.0	0.0
	Cryptophyta	0.0	0.0	19028.7	41052.3	23962.1	161742.5
	Total	108885.6	276970.8		5638.1	8104.7	10571.4
Mar. 2	0 Chlorophyta	49333.2	94261.7	7928.6 42109.6	32242.8	6166.7	6695.4
	Chrysophyta	45633.2	71530.3	0.0	0.0	0.0	0.0
	Cryptophyta	0.0	0.0	50038.2	37880.9	14271.4	17266.8
	Total	94966.4	165792.0	1057.1	37000.3	2290.5	0.0
Apr.	6 Chlorophyta	154342.5	91618.9	0.0	21	2466.8	9866.8
_	Chrysophyta	33476.1		0.0		0.0	0.0
	Cryptophyta	0.0		5285.8		4753.3	9866.8
	Total	187818.6				1409.5	23785.7
Apr. 2	7 Chlorophyta	208080.4				7928.7	118752.3
_	Chrysophyta	37704.7			:	0.0	
	Cryptophyta	0.0				9338.2	142538.0
	Total	245785.1				20261.9	40699.9
May 1	8 Chlorophyta	71004.7				48528.6	
_	Chrysophyta	18849.3			*	0.0	
	Cryptophyta	0.0				68790.5	
	Total	89854.0				32771.3	
Jun.	9 Chlorophyta	52857.9				47747.6	
	Chrysophyta	9866.7				0.0	
	Cryptophyta	1233.3				80518.9	
	Total	63957.0				4052.4	
Jun. 7	26 Chlorophyta	41580.8				3876.3	
	Chrysophyta	6519.				0.0	
	Cryptophyta	0.0				7928.7	
	Total	48099.9	9 153813.	•			

Appendix 4. The temporal and spatial variation in the relative abundances(%) of the groups of phytoplankton in Ta-Chia River.

Date		Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu− Ling
1986								
Oct. 2	1	Chlorophyta	76.829	96.176	7.738	37.931	3.008	0.000
••••	-	Chrysophyta	23.171	3.824	92.024	62,069	96.992	100.000
		Cryptophyta	0.000	0.000	0.238	0.000	0.000	0.000
No♥. 1	2	Chlorophyta	96.078	78.154	48.466	12.602	9.091	1.575
	-	Chrysophyta	3.922	21.846	51.534	87.398	90.909	98.425
		Cryptophyta	0.900	0.000	0.000	0.000	0.000	0.000
Dec.	2	Chlorophyta	98.291	97.059	90.194	38.461	52.766	86.580
DCC.	•	Chrysophyta	1.709	2.941	9.806	61.539	47.234	13.420
		Cryptophyta	0.000	0.000	0.000	0.000	0.000	0.000
Dec. 2	7	Chlorophyta	91.781		43.816	39.474	39.998	75.609
Dec. 2		Chrysophyta	8.219	34.921	56.184	60.526	60.002	24.391
		Cryptophyta	4.000	0.000	0.000	0.000	0.000	0.000
1987		CI J D C Opin J C C	41000	*****				
Jan. 1	לו	Chlorophyta	62.006	22.555	30.719	43.836	81.521	79.432
ogn. 1	. 4	Chrysophyta	37.994	77.445	69.290	56.164	18.479	20.568
		Cryptophyta	0.000	0.000	0.000	0.000	0.000	0.000
Feb.	5	Chiorophyta	43.790	48.631	62.595	2.759	94.493	32.258
160.	,	Chrysophyta	56.210	51.369	37.405	97.241	5.507	67.742
		Cryptophyta	0.000	0.000	0.000	0.000	0.000	0.000
Feb.	2.2	Chlorophyta	77.670	88.232	18.518	43.777	82.352	13.072
reu. 2	2)	Chrybophyta	22.330	11,768	81.482	56.223	17.648	86.928
		Cryptophyta	0.000	0.000	0.000	0.000	0.000	0.000
	20	Chlorophyta	51.948	56.855	15.845	14.884	56.790	61.224
Mar.	20		48.052	43.145	84.155	85.116	43.210	33.776
		Chrysophyta	0.000	0.000	0.000	0.000	0.000	0.000
N	e	Cryptophyta	82.175	52.685	19.999	0.000	48.147	0.090
Apr.	6	Chlorophyta Chrysophyta	17.824	32.523	80.001		51.853	100.00
			DOG.O	14.792	0.000		0.000	0.000
	77	Cryptophyta	84.659	77.075	79.745	•	15.094	16.68
Apr.	41	Chlorophyta	15.341	21.476	29.255		84.906	83.31
		Chrysophyta	0.000	1.449	0.000		0.000	0.000
		Cryptophyta	79.022	71.285	3.284		29.455	26.470
May	18	Chlorophyta	20.978	25.945	96.716		70.545	75.53
		Chrysophyta		23.943	0.000		0.000	0.00
_	_	Cryptophyta	0.000	48.425	43.902		40.700	17.20
Jun.	9	Chlorophyta	82.645	17.413	56.098		59.300	82.79
		Chrysophyta	15.427	34.162	0.000		9.009	0.00
		Cryptophyta	1.928		U. 000		51.111	20.22
Jun.	26	Chlorophyta	86.447	89.118			48.889	79.77
		Chrysophyta	13.553	10.653			0.000	0.00
		Cryptophyta	0.900	0.229			V.000	

Appendix 5. The temporal and spatial variation in the species diversity of zooplankton in Ta-Chia River. SN: Species number; DI: Diversity index, D.

Date		Parameter	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling
1986							ž.	
Oct.	21	SN	12	15	18	7	1	3
		DI	0.89	0.53	0.19	0.71	0	1.39
Nov.	12	SN	7	17	25	7	5	3
		DI	0.47	1.14	0.24	1.76	2.02	1.27
Dec.	2	SN	11	9	12	5	2	1.
		DI	0.18	0.14	0.12	0.08	0.93	0
Dec.	22	SN	14	15	3	2	1	2
		DI	0.24	0.39	1.45	0.30	0	0.62
1987								_
Jan.	12	SN	15	22	3	5	3	3
		DI	0.22	0.55	0.76	0.25	1.12	0.85
Feb.	5	SN	14	15	4	4	4	3
		DI	0.68	0.52	1.81	0.40	1.20	1.48
Feb.	23	SN	12	19	5	4	4	3
		DI	0.48	0.68	1.36	0.61	1.46	1.20
Mar.	20	SN	13	16	3	8	3	4
		DI	0.44	0.29	1.11	0.22	1.28	1.19
Apr.	6	SN	16	15	3		2	1
•		DI	0.20	0.19	0.15		0.33	0
Apr.	27	SN	11	15	2		2	5
•		DĪ	0.23	0.21	0.47		0.47	0.05
May	18	SN	17	17	7		5	7
-		DI	0.57	0.60	1.17		1.34	1.73
Jun.	9	SN	19	13	4		9	6
		DI	0.92	0.66	1.46		9.58	0.93
Jun.	26	SN	1.7	15			7	4
		DI	0.80	0.95			0.93	1.27

Appendix 6. The temporal and spatial variation in the species number of the groups of zooplankton in Ta-Chia River.

Date	Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling	
1986							_	
Oct. 21	Protozoa	4	4	6	2	0	3	
•	Rotifera	7	8 .	11	4	1	0	
	Crustacea	1	3	1	1	0	0	
Nov. 12	Protozoa	2	4	6	2	2	1	
	Rotifera	. 4	10	16	5 .	3	2	
	Crustacea	1	2	3	0	0	0	
Dec. 2	Protozoa	3	3	3	3	2	1	
200.	Rotifera	6	5	8 -	2	0	Ō	
	Crustacea	2	1	1,	0	0	0	
Dec. 22	Protozoa	4	4	2	2	. 0	2	
	Rotifera	8	10	1	0	1	0	
	Crustacea	2	1	0	0	0	0	
1987							_	
Jan. 12	Protozoa	3	6	2	3	3	2	
04.11	Rotifera	10	14	1	2	0	1	
	Crustacea	2	2	0	0	0	0	
Feb. 5	Protozoa	4	6	3	4	3	3	
100.	Rotifera	9	8	1	0	1	0	
	Crustacea	1	1	0	0	0	0	
Feb. 23	Protozoa	4	6	3	3	4	3	
100.00	Rotifera	7	11	2	1	0	0	
	Crustacea	1	2	0	0	0	0	
Mar. 20	Protozoa	4	6	2	5	3	4	
	Rotifera	7	8	1	3	0	0	
	Crustacea	2	2	0	0	0	0	
Apr. 6	Protozoa	4	4	2		2	1	
	Rotifera	10	9	1		0	0	
	Crustacea	2	2	0.		0	0	
Apr. 27	Protozoa	4	5	2		2	3	
p	Rotifera	5	8	0		0	1	
	Crustacea	1	2	0	•	0	1	
May 18	Protozoa	6	5	3		2	2	
iidj .v	Rotifera	9	11	4		3	5	
	Crustacea	2	1	0		0	Ō	
Jun. 9	Protozoa	5	3	2		3	3	
,50	Rotifera	12	7	2		6	3	
	Crustacea	2	3	0		0	0	
Jun. 26	Protozoa	4	3			3	2	
Juli 20	Rotifera	12	10			4	2	
	Crustacea	1	2			0	0	

Appendix 7. The temporal and spatial variation in the abundance(No./L) of the groups of zooplankton in Ta-Chia River.

				Station	15	<i>b</i>	
Date	Taxa	Te- Chi	Yu- Non	Suṇg- Mou	Chung- Hsing	Ping- Teng	Wu- Ling
1986				· · .			
Oct. 21	Protozoa	629.3		2153866.6	104.7	0.0	3.4
	Rotifera	16.1	452.5	6773.4	9.3	2.0	0.0
	Crustacea	7.1	215.1	533.3	0.7	0.0	0.0
	Total	652.5	24128.1	2161173.3	114.7	2.0	3.4 2.7
Nov. 12		1040.9		2929946.6	32.0 12.0	2.0 7.3	1.4
	Rotifera	11.5	67.6	14639.4 4746.7	0.0	0.0	0.0
	Crustacea	2.7	41.8	2949332.7	44.0	9.3	4.1
_	Total	1055.1	1917.3	375749.3	382.7	2.0	0.7
Dec. 2		10635.6 19.7	42.7	501.2	1.4	0.0	0.0
	Rotifera	4.5	8.9	330.6	0.0	0.0	0.0
	Crustacea	10659.8	19756.5	376581.1	384.1	2.0	0.7
D 31	Total Protozoa	31003.3	5185.1	24.0	76.0	0.0	11.6
Dec. 22	Rotifera	275.4	86.0	4.0	0.0	0.4	0.0
	Crustacea	42.0	20.0	0.0	0.0	0.0	0.0
	Total	31320.7	5291.1	28.0	76.0	0.4	11.6
1987	10141						
Jan. 1	2 Protozoa	40394.0	4546.0	9.4	228.0	23.3	17.5
	Rotifera	608.0	81.5	0.7	1.4	0.0	0.7
	Crustacea	58.7	17.3	0.0	0.0	0.0	0.0
	Total	41060.7	4644.8	9.4	229.4	23.3	18.2
Feb.	5 Protozoa	1025.3	3907.9	3.9	38.2	6.2	11.1
	Rotifera	32.1	55.4	0.6	0.0	0.4	0.0
	Crustacea	15.3	18.0	0.0	0.0 38.2	0.0 6.6	11.1
_	Total	1072.7	3981.3	4.5	100.7	27.4	10.6
Feb. 2		2573.4	9667.3 521.9	1.4	0.7	0.0	0.0
	Rotifera	64.0 1.3	36.0	0.0	0.0	0.0	0.0
	Crustacea	2638.7	10225.2	12.7	101.4	27.4	10.6
	Total	8780.4	55843.6	23.4	969.4	30.7	72.7
Mar. 2		147.6	593.0	0.7	2.7	0.0	0.0
	Rotifera Crustacea	3.6	40.9	0.0	0.0	0.0	0.0
	Total	8931.6	56477.5	24.1	972.1	30.7	72.7
N	6 Protozoa	26268.0	82768.9	510.6		32.7	4.7
Apr.	Rotifera	48.0	287.3			0.0	0.0
	Crustacea	75.5	54.2	0.0		0.0	0.0
	Total	26391.5	83110.4	511.3		32.7	4.7
Apr. 2		20008.9	133857.7	32.6		33.3	1548.6
	Rotifera	19.6	346.6	0.0		0.0	1.3
	Crustacea	3.6	35 .7			0.0	0.7
	Total	20032.1	134240.0	32.6		33.3	1550.6
May 1	.8 Protozoa	20432.0	43051.6	268.5		28.0	28.6
-	Rotifera	121.2	214.3	4.5		4.0	5.5
	Crustacea	21.3	21.4	0.0		0.0	0.0
	Total	20574.5	43287.3			32.0	34.1
Jun.	9 Protozoa	6658.1	46283.6			542.1	108.0
	Rotifera	25.9	103.2	2.6		12.7	5.4 0.0
	Crustacea	20.7	103.2			0.0 554.8	113.4
	Total	6704.7	46490.0			78.7	36.7
Jun. 2	6 Protozoa	7426.7	112635.5			4.1	3.3
	Rotifera	45.4 17.3	1111.0 475.5			0.0	0.0
	Crustacea Total	7489.4	114222.0			82.8	40.0
	1014	, 107.4 					

Appendix 8. The temporal and spatial variation in the relative abundances(%) of the groups of zooplankton in Ta-Chia River

Date		Taxa	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	_	Wu- Ling
1986							-	
Oct.	21	Protozoa	96.445	97.233	99.661	91.282	0.000	100.000
		Rotifera	2.468	1.876	0.312	8.108	100.000	0.000
		Crustacea	1.088	0.891	0.024	0.610	0.000	0.000
Nov.	12	Protozoa	98.654	94.295	99.332	72.727	21.505	65.854
		Rotifera	1.089	3.525	0.492	27.273	78.495	34.146
		Crustacea	0.256	2.180	0.169	0.000	0.000	0.000
Dec.	2	Protozoa	99.773	99.737	99 .7 79	99.635	100.000	100.000
		Rotifera	0.184	0.215	0.132	0.610	0.000	0.000
		Crustacea	0.042	0.045	0.087	0.000	0.000	0.000
Dec.	22	Protozoa	98.987	98.073	85.714	100.000	0.000	100.000
		Rotifera	0.880	1.549	14.286	0.000	100.000	0.000
		Crustacea	0.134	0.378	0.000	0.000	0.000	0.000
1987								
Jan.	12	Protozoa	98.376	97.872	92.553	99.390	100.000	96.154
		Rotifera	1.481	1.753	7.447	0.610	0.000	3.846
		Crustacea	0.134	0.452	0.000	0.000	0.000	0.000
Feb.	5	Protozoa	95.582	98.157	86.666	100.000	93.939	100.000
		Rotifera	2.922	1.392	13.333	0.000	6.061	0.000
		Crustacea	1.426	0.452	0.000	0.000	0.000	0.000
Feb.	23	Protozoa	97.525	94.545	88.976	99.310	100.000	100.000
		Rotifera	2.425	5.106	11.024	0.690	0.000	0.000
		Crustacea	0.049	0.352	0.000	0.000	0.000	0.000
Mar.	20	Protozoa	98.307	98.879	97.096	100.000	100.000	100.000
		Rotifera	1.651	1.051	2.905	0.000	0.000	0.000
		Crustacea	0.040	0.072	0.000	0.000	0.000	0.000
Apr.	6	Protozoa	99.532	99.589	99.863		100.000	100.000
_		Rotifera	0.183	0.344	0.137		0.000	0.000
		Crustacea	0.286	0.065	0.000		0.000	0.000
Apr.	27	Protozoa	99.884	99.715	100.000		100.000	99.871
-		Rotifera	0.097	0.258	0.000		0.000	0.084
		Crustacea	0.017	0.026	0.000		0.000	0.045
May	18	Protozoa	99.306	99.455	98.352		87.500	83.871
•		Rotifera	0.588	0.493	1.649		12.500	16.130
		Crustacea	0.103	0.049	0.000		0.000	0.000
Jun.	9	Protozoa	99.304	99.557	89.431		97.711	95.237
		Rotifera	0.384	0.222	10.570		2.288	4.762
		Crustacea	0.308	0.222	0.000		0.000	0.000
Jun.	26	Protozoa	99.163	98.611			95.048	91.750
		Rotifera	0.605	0.970			4.950	8.250
		Crustacea	0.231	0.417		•	0.000	0.000

Appendix 9. The temporal and spatial variation in the abundance(No./L) of Peridinium sp. in Ta-Chia River

Date	Te- Chi	Yu- Non	Sung- Mou	Chung- Hsing	Ping- Teng	Wu- Ling
1986						
Oct. 21	548.4	22232.9	2108480.0	102.7	0.0	0.7
Nov. 12	974.2	1567.1	2863360.0	28.7	0.7	0.0
Dec. 2	10416.0	19424.0	371440.0	381.3	0.7	0.7
Dec. 22	30448.0	5,044.7	12.0	72.0	0.0	9.8
1987						
Jan. 12	40010.0	4325.3	0.7	222.0	14.0	14.7
Feb. 5	976.0	3717.3	0.6	36.0	4.9	4.4
Feb. 23	2475.5	9306.7	0.7	90.7	2.7	2.0
Mar. 20	8374.2	54445.3	8.7	944.7	14.0	28.0
Apr. 6	25794.0	81282.7	501.3		30.7	4.7
ADF. 27	19400.0	130533.3	29.3		30.0	1543.3
May 18	18250.0	38170.7	169.8		5.3	9.3
Jun. 9	4892.7	39338.7	8.7		510.7	94.0
Jun. 26	5982.0	83933.3			70.0	26.7