台東蘇鐵保育遺傳學研究:族群遺傳結構、族群大小變化及 境外栽種植株來源鑑定

Genetic conservation of *Cycas taitungensis*: population genetic structure, demographic changes, and the source identification of *ex situ* planted *C. taitungensis*

委託單位:行政院農業委員會林務局 執行單位:國立屏東科技大學、國立中山大學 研究主持人:廖培鈞 共同主持人:江友中 研究人員:黃秉宏、沈姿秀、黃敏純、鍾菡薇、沈仙惠、柯雅筑、萬祐廷、 賴世杰、陳昱錡、何紹瑋、林俊廷

中華民國 101 年 11 月 8 日

目 錄

中文摘要2
英文摘要3
第一章 前言5
第二章 材料與方法
1. 樣本採集
2. 微衛星體 DNA 引子設計
3. 台東蘇鐵遺傳多樣性比較9
4. 台東蘇鐵野生族群遺傳分布-地理分布結構分析10
5. 台東蘇鐵野生族群有效族群大小初估10
6. 台東蘇鐵野生族群及境外栽種植株遺傳組成比較10
第三章 研究成果11
1. 中性基因座檢測11
2. 台東蘇鐵野生族群哈溫平衡(HARDY-WEINBERG EQUILIBRIUM)檢測
3. 台東蘇鐵野生族群對偶基因頻率11
4. 台東蘇鐵野生族群遺傳多樣性檢測12
5. 族群遺傳結構檢測12
5.1 台東蘇鐵野生族群分子變異分析(AMOVA)12
5.2 主座標分析(PCoA)
5.3 台東蘇鐵野生族群貝氏歸群分析(Bayesian clustering analysis)
6. 台東蘇鐵野生族群遺傳分化及基因交流13
7. 台東蘇鐵野生族群遺傳分布-地理分布結構分析14
7. 區別檢定(ASSIGNMENT TEST)14
8. 台東蘇鐵野生族群有效族群大小估算15
第四章 討論與建議16
第五章 參考文獻
附表
附圖
附錄
期末報告審查意見回覆41

中文摘要

了解物種的遺傳組成及遺傳結構是進行保育遺傳工作的首要之務。台東蘇鐵(Cycas taitungensis Shen, Hill, Tsou & Chen)的野生族群僅分布在台東蘇鐵紅葉村台東蘇 鐵保留區及海岸山脈台東蘇鐵自然保護區內,為台灣特有種植物,其遺傳多樣性之 保育長久以來被植物學家所關注。然而由於分子標誌演化速率的限制,僅能粗略對 台東蘇鐵的遺傳變異以及有效族群大小進行估算,且無法對其短距離的空間分布差 異進行遺傳變異之探討。因此本研究擬利用演化速率較快的微衛星體 DNA 作為估 算台東蘇鐵遺傳多樣性之分子標誌,以進行台東蘇鐵保育遺傳學的評估工作。本研 究之主要目的為(1)主要族群(紅葉村台東蘇鐵自然保留區)與邊緣族群(海岸山脈台 東蘇鐵自然保護區)的遺傳差異比較、(2)遺傳多樣性及有效族群大小的評估、(3)境 外栽種植株的遺傳來源檢測。研究結果中顯示台東蘇鐵野生族群的遺傳變異呈中等 程度變異,紅葉族群(主族群)與海岸山脈(邊緣族群)雖然遺傳多樣性的程度類似,但 形成遺傳變異的對偶基因組成及頻率不同,是造成族群分化的可能原因。根據遺傳 分布及地理分布,亦呈現族群內的亞結構,這些亞結構的形成可能與種子及花粉的 傳播距離受限有關。根據各種遺傳指數之檢測,推論海岸山脈族群因近交係數高, 交配系統呈現非逢機配對現象,使其有效族群大小偏低,而紅葉族群內的 23 林班 有效族群大小最低,但近交係數低,顯示其有效族群大小的下降不是因為交配系統 所致,而推測可能是近代的棲地零碎化或遭逢瓶頸效應所致;40林班則廣納多數來 源的基因型,擁有較高的有效族群大小,族群內的遺傳組成呈現高度的異質性。本 研究之成果已獲得台東蘇鐵野生族群遺傳結構的資訊,與過去對台東蘇鐵所進行之 AFLP 研究結果皆呈現一致的台東蘇鐵族群間的遺傳分化。此外,本研究亦比對台 東蘇鐵與近緣種琉球蘇鐵的遺傳組成,發現境外栽種的台東蘇鐵主要來自紅葉族群 的三個林班,少數植株在區別檢定中歸類為琉球蘇鐵型。因此建議未來在進行保育 工作時,需考量地理分布及族群結構、亞結構,劃定小範圍的管理單元,並持續保 護生長棲地以維護其生長及繁殖條件,以維持其有效族群大小;境外復育則需避免 與他種蘇鐵共同栽種,以降低基因滲入之可能性。

關鍵字:台東蘇鐵、微衛星體 DNA、遺傳多樣性、族群遺傳結構、有效族群大小、 管理單元

英文摘要

Abstract

Cycas taitungensis Shen, Hill, Tsou & Chen is endemic to the East Taiwan, restricted distributed in the areas of Taitung Hongye Village Taitung Cycas Nature Reserve and the Coastal Range Taitung Cycas Reserve. The conservation genetics of C. taitungensis has been concerned for a long time. However, the limitation of lower evolutionary rates in organelle DNAs or allozymic markers restricted the accuracy of genetic-diversity estimation and the estimates of the effective population size. The further exploration on the genetic-related spatial distribution and genetic structure were neither able to be performed. We are also going to compare the ex situ planted C. taitungensis with the wild populations in order to understand the sources of these planted *C. taitungensis*. Therefore, we used the microsatellite marker with highly evolutionary rate for estimating the genetic diversity and the effective population sizes of the extant populations. There are three goals in this study: (1) comparing genetic variations between the main population (Hongye Village) and the marginal population (Coastal Range) of *C. taitungensis*; (2) evaluating the population genetic structures and effective population sizes of the wild populations; and (3) identifying the sources of the ex situ planted C. taitungensis. The results showed medium level of genetic diversity in wild populations of C. taitungensis and the level of genetic diversity was not significant different between populations. However, significant genetic structure was detected between populations and between subpopulations, due to different allele frequencies between populations. population genetic differentiation between and within populations could be related to the limited seed dispersal and pollen flow. The population of Coastal Range has high inbreeding coefficient and the non-random association of gametes resulting in lower effective population size. The compartment 23 of the Hongye Nature Reserve has the high value of inbreeding coefficient but the lowest effective population size, and the recent severe bottleneck or fragmentation could be the reason of population size decline; in contrast, the compartment 40 has the highest effective population size, which could be due to the multiple sources of genotypes and highly genetic heterogeneity. The microsatellite analyses show consistent consequences with the previous analyses of AFLP that C. taitungensis is genetically differentiated within and between populations. In addition, the assignment test showed that the most examined planted individuals of C. taitungensis were sourced from three compartments of the Hongye Nature Reserve instead of the Coastal Range. Small amounts of planted C. taitungensis were assigned to the type of C. revoluta. Our results showed information of population genetic structure in wild C. taitungensis. Restoration and reforestation should consider the genetic and geographic distributions. Small-ranged management units should be considered when collecting seeds for restoration and reforestation. We also suggest keeping and protecting the

habitats for preserving the natural resources for the growth and reproduction of wild *C*. *taitungensis*, in order to maintain its effective population size. Furthermore, sympatric plantation of different cycad species should be prevented to decrease the probability of introgression.

Keywords: *Cycas taitungensis*, microsatellite DNA, genetic diversity, population genetic structure, effective population size, management units

第一章 前言

特有種的保育研究一直以來都是生物學家所關注的焦點。特有種的出現與該物種和 其近緣種之生殖隔離有關,不少的研究案例指出生殖隔離可能因地理隔離所致[ref]。 除地理隔離之外,族群大小也影響遺傳漂變(genetic drift)的速度。因此在特有物種 的保育遺傳研究中,首要之務便是了解族群間的分化程度與遺傳結構,以及估算其 有效族群大小。

近年來在植物多樣性速率變化的研究中,發現子遺植物蘇鐵屬(Cycas, Cycadaceae) 雖有古老的演化歷史,但現在所見之物種多樣性則是近代(更新世)才形成 (Nagalingum et al. 2011)。利用細胞核及胞器 DNA 等分子證據進行定年,發現蘇鐵 屬的起源時間約為一千萬年,而其物種形成的時間在八百萬至九百萬年前之間與三 百萬與四百萬年前之間有兩次的輻射演化事件,而造就現今所見之物種多樣性 (Nagalingum et al. 2011),此結果顛覆以往認為子遺蘇鐵以存活於世上二億年之久的 認知。且根據 AFLP 資料的證據證明蘇鐵屬的物種組成與地理分布有直接的關係 (Radha and Singh 2011),地理隔離也造就蘇鐵植物在各地之物種多樣性。

在族群遺傳的研究上,大多數被研究的蘇鐵物種具有明顯的遺傳結構,這些地理結 構多半與地理隔離、傳粉或種子散播的阻礙、地質歷史有關。例如早期利用同功酶 作為分子標記,檢測分布在太平洋島嶼上的 C. seemannii 的遺傳結構,發現因為缺 乏有效的長距離基因交流機制(如傳粉、種子散播等),使得島嶼間的族群呈現明顯 的遺傳分化及地理結構(Keppel 2002);分布在大陸西南一帶的德保蘇鐵(C. debaoensis)在葉綠體 DNA 的研究上,發現更新世冰河期族群退縮至不同地質環境, 導致族群間明顯的遺傳分化(Zhan et al. 2011),這個結果與 Xie et al. (2005)利用 ISSR 進行的族群遺傳檢測結果一致, Xie et al. (2005)並認為他們的遺傳分化與德保蘇鐵 島嶼型(island pattern)的侷限分布有密切關係;在巴蘭薩蘇鐵複合群(C. balansae complex)的研究中也發現地理隔離、以往的族群歷史動態(historical demography)以 及印度板塊與歐亞板塊的撞擊造成的地理隔離事件(vicariance event)使其在地理分 布上形成五個獨立的族群區塊(Xiao and Gong 2006);在 ISSR 的研究中則發現貴州 蘇鐵(C. guizhouensis)的遺傳歧異度低但族群間存在明顯的遺傳分化($G_{ST} = 0.4321$), 並推測與族群內的近交(inbreeding)、族群間缺乏有效的基因交流機制有關(Xiao et al. 2004); 數量非常稀少的仙湖蘇鐵(C. fairylakea)則在 AFLP 的研究中呈現中等程度的 遺傳變異及分化,但由於年齡結構成倒金字塔型,使其族群更新不易,在缺乏種內 順暢的基因交流及幼體更新的情況下使得族群內個體間(老樹)的遺傳組成差異提高, 使其族群結構主要存在於族群內而呈亞結構族群(substructured population)(Jian et al. 2006);而分布在關島的密克羅尼西亞蘇鐵(C. micronesica),南、北族群亦呈現明顯 的分化,無獨有偶的是這些族群的差異亦可能與土壤類型有關,這與德保蘇鐵對族 群分化的推論相似(Zhan et al. 2011), 並可能與傳粉者的分布、森林連續性(生態廊 道)與人為干擾有關(Cibrian-Jaramillo et al. 2010)。然而遺傳結構在廣泛栽植的琉球

蘇鐵(C. revoluta)中則不存在,利用 RAPD 的分子證據顯示相距 2000 公里遠的琉球 蘇鐵族群之遺傳結構不明顯,族群間僅存在 25%的遺傳變異且其遺傳組成無法由主 座標分析(Principle coordinate analysis, PCoA)區分(Indira et al. 2011);葉綠體及粒線 體 DNA 的分析也證明分布在琉球群島上的琉球蘇鐵野生族群遺傳歧異度非常低 (nucleotide diversity $\pi = 0.00071$),甚至低於侷限分布的台東蘇鐵,但具有明顯的北、 中、南島嶼的遺傳分化,推測可能受到第四紀冰期(Quaternary glacials)時族群退縮 導致瓶頸效應的影響(Kyoda and Setoguchi 2010)。

台東蘇鐵(C. taitungensis Shen, Hill, Tsou & Chen)為台灣特有種植物,分布於台灣東 部山區,目前野生族群僅見於台東縣紅葉村台東蘇鐵自然保留區(隸屬於林務局台東 林區管理處延平事業區第 19、23 及 40 林班)與海岸山脈台東蘇鐵自然保護區(屬國 有林成功事業區第31、32林班範圍內)。台東蘇鐵分布於低海拔山區,紅葉村台東 蘇鐵自然保留區為目前較大之野生族群,海岸山脈族群則較小,為現生野生台東蘇 鐵之邊緣族群。此外,台東蘇鐵多以重力落果的傳播方式散播子嗣,因此容易形成 "家族性"的亞族群結構。蘇鐵類植物的保育工作則須考慮種子及花粉的傳播方式, 尤其是種子直接影響族群的更新,因此環境差異及地理分布等可能影響蘇鐵種子萌 發、散播等因子可能與蘇鐵的復育與更新息息相關(Alvarez-Yepiz et al. 2011)。黃生 教授等人曾於2004年發表台東蘇鐵的基本生態及族群遺傳研究(Huang et al. 2004), 他們發現葉子的產量在樹高1米以下時與樹高成高度相關(r=0.95),即樹愈高,葉 子數量愈多,但種子產量(數量)在各植株間差異甚大(80~400顆/株),這些結果以顯 示出不同微棲地類型的台東蘇鐵族群在營養器官(如葉子數目)的投資、繁殖器官(種 子)的投資及年齡結構上有明顯的差異。此外又檢測出台東蘇鐵的雌雄性別比約為 1.7:1 (Huang et al. 2004),這與台大溪頭實驗林賴彥任博士所提供的資訊(2.3:1)略有 差異,但均呈現出台東蘇鐵的性別比例不均的現象。黃生教授又利用同功酶檢測出 台東蘇鐵的遺傳變異度低($H_e = 0.039$),族群間的遺傳分化小(分化指數 $F_{ST} = 0.051$), 遺傳結構可反映出小區域範圍內的微棲地環境因子的差異(Huang et al. 2004)。

近年來,台東蘇鐵的族群遺傳研究在分子生物學的進步下有了深入的探究。利用胞 器(葉綠體及粒線體)DNA 對台東蘇鐵與近緣種琉球蘇鐵的研究中發現,這兩種蘇鐵 現今在種間及族群間缺乏有效的基因交流,但在過去曾有順暢的基因交流,加上祖 先族群的有效族群大小較大、生活史長及突變率低,導致胞器 DNA 保存了長時間 的併系關係(paraphylly)(Chiang et al. 2009)。此外亦在這些蘇鐵中檢測出大量的新興 突變(newly derived mutations),多數新興的突變不易在地理區之間散播,僅少數能 藉由族群擴張而成功的擴散(Chiang et al. 2009),這樣的突變擴散的模式符合 Klopfstein et al. (2006)所提出來的 surfing mutation model,但由於大多數的新興突變 可能受到遺傳漂變的力量,而在小族群中快速消失(lost)或成為有害突變(deleterious mutation)而無法長久保留或擴散(Travis et al. 2007),使得台東蘇鐵的遺傳多樣性降 低。近年來在台東蘇鐵胞器基因組的研究中亦發現台東蘇鐵的粒線體與葉綠體基因 組存在大量的 RNA 編輯位點(RNA editing sites),而這種 RNA 編輯位點的保留在粒

線體中更甚於葉綠體(Chen et al. 2011),且與被子植物比較後發現,許多在被子植物中已被刪除的片段仍保留在台東蘇鐵的粒線體 DNA中(Chaw et al. 2008)。而這些保留下來的 RNA 編輯片段使得蘇鐵植物的胞器基因組較其他種子植物大且趨於保守,此現象與蘇鐵植物的生活史長及演化速度較慢有關(Chaw et al. 2008; Chen et al. 2011)。

受限於分子標誌的演化速率的影響,過去以 DNA 定序的方式不易估算現生台東蘇 鐵之遺傳變異程度及近代之族群動態歷史(recent demography)。尤其台東蘇鐵的粒線 體 DNA 及葉綠體 DNA 均證實為母系遺傳(Zhong et al. 2011),因此利用演化速率較 慢之胞器 DNA 區別分布範圍侷限、遺傳多樣性可能不高的台東蘇鐵的亞族群之遺 傳變異,可獲得之解析力有限。蘇鐵類植物的遺傳歧異度較低的原因可能與其基因 組重複(genome duplication)情形較其他種子植物少,染色體大小較小及有效族群大 小較低有關(Gorelick and Olson 2011)。雖然這些降低遺傳多樣性的因子可藉由單一 基因的複製產生偽基因(pseudogenes)或藉由不完全的協同演化(incomplete concerted evolution)恢復(Xiao et al. 2010),但這類的遺傳多樣性恢復則多侷限在特定的基因片 段,例如核糖體 ITS 片段等。因此為了探討台東蘇鐵近代的族群變動情形,較為敏 感的遺傳標誌(例如微衛星體 DNA)的使用是較佳的選擇。為求能更深入了解台東蘇 鐵野生族群之遺傳多樣性,本計畫擬使用演化速度較快之微衛星體 DNA (microsatellite DNA)作為分子標誌,探討台東蘇鐵之遺傳多樣性,並同時比較不同 族群(紅葉族群與海岸山脈族群)的族群遺傳差異, 佐以 Bayesian coalescent-based inferences (Beaumont et al. 2002)評估現生族群及祖先族群之有效族群大小,以了解 現生台東蘇鐵之遺傳多樣性現況。

本計畫將藉族群遺傳分析估算目前台東蘇鐵不同族群及不同亞族群的遺傳變異程度,以評估台東蘇鐵野生族群目前的遺傳多樣性的變化趨勢,藉以(1)了解台東蘇鐵 主族群(紅葉族群)及邊緣族群(海岸山脈族群)的遺傳變異度;(2)評估族群間及族群 內(亞族群間)的遺傳結構;(3)估算現生族群的有效族群大小;(4)檢測境外栽種植株 的遺傳來源,是為單一來源或多次引種。

第二章 材料與方法

1. 樣本採集

本研究目的在於解決三大問題:(1)台東蘇鐵主要族群(紅葉族群)與邊緣族群(海岸山 脈族群)之遺傳多樣性差異程度及是否存在族群間的遺傳結構或族群內的亞結構;(2) 台東蘇鐵之有效族群大小為何;(3)原生育地境外栽植之台東蘇鐵來源是否來自單一 族群。據此問題進行策略性採樣:

- (1) 主要族群與邊緣族群之遺傳多樣性比較:紅葉村台東蘇鐵自然保留區第19林班、 23 林班及40 林班分別採取36、47、42 株植株為材料,另外由於海岸山脈為邊 緣族群,故選取海岸山脈台東蘇鐵自然保護區42 株台東蘇鐵之新鮮葉片,每株 相鄰至少5公尺,採取年輕且新鮮、未受損傷之葉片以矽膠乾燥之,以備後續 遺傳實驗使用。
- (2) 在野生樣區周圍之原住民部落、台東市區及其他栽植台東蘇鐵之地點,選取46 株之栽種植株,採集葉片萃取 DNA 供後續實驗使用。
- (3) 檢測琉球蘇鐵野生植株 34 株及境外栽種植株 14 株並與台東蘇鐵的遺傳組成進行比對。

2. 微衛星體 DNA 引子設計

微衛星體 DNA 之演化速率較快,因此可用於較小範圍之遺傳多樣性估算,甚至可 作為親子鑑定之用,因此本研究擬以微衛星體 DNA 作為分子標誌,進行遺傳多樣 性之分析。微衛星體 DNA 為普遍存在於核基因組的短片段重複序列,大多數位於 非譯碼區(noncoding region),由於演化速率高故可用於偵測近期之演化事件;相對 少數之微衛星體 DNA 屬於譯碼區,由於屬於可表現之基因片段,故相對保守而具 較高之可跨物種使用比例(higher transferbility)。在核基因組微衛星體 DNA (genomic SSR)的篩選上,使用 AFLP of sequences containing repeats (FIASCO)的方式進行篩選 (Zane et al. 2002),並以不同之 biotinylated probes [B-(AG)₁₅, B-(AC)₁₅]進行 DNA 雜 合,以獲得合適之 genomic SSR。再分別自所得之微衛星體 DNA 基因座序列之 5' 端及 3'端設計適當的引子以供 PCR 擴增。Forward 引子之序列在 5'端合成螢光標定 物,作為大量樣本擴增與基因型鑑定(genotyping)之用。此部分的實驗已發表在 American Journal of Botany (Ju et al. 2011)。此外,我們亦測試 Cibrian-Jaramillo et al. (2008)所發展之 EST-SSR 引子,進行測試。根據計畫內容,我們從中共挑選出 12 組較易擴增的基因座引子(表一),進行台東蘇鐵的遺傳多樣性檢測。

所獲得之微衛星體 DNA 引子將以梯溫 PCR (gradient PCR)的方式找尋最適合的黏合 溫度(annealing temperature),以利後續實驗進行(表一),反應產物進行 agarose 膠脂 電泳分離,確定 PCR 反應成功之產物之長度後,再以自動定序儀進行微衛星體 DNA 定序,以確認其長度變異是否源自於重複片段的差異。為檢測篩檢出來的微衛星體 DNA 片段之多型性,經過 PCR 反應擴增後,將產物進行 1.5% agarose 膠脂電泳分離,確定 PCR 反應成功之產物之長度後再進行聚丙烯酰胺凝膠電泳(polyacryamide gel electrophoresis,簡稱 PAGE),以 10% Acryamide:Bis (29:1)調製膠體, PAGE 以 電壓 90V 進行 14~16 小時的電泳,判斷同型合子及異型合子,並以 Quantity-One v 4.62 (BIO-RAD)協助判斷條帶大小,找出具多型性之微衛星體 DNA 基因座。電泳 膠片以溴化乙啶(Ethidium bromide,簡稱 EtBr)染色並於紫外燈下照射,讀取條帶。本研究所使用的引子列於表一。

3. 台東蘇鐵遺傳多樣性比較

微衛星體 DNA 之判讀以 Genetic Profiler (Amersham Biosciences)進行,再利用 GenAlEx v 6.41 (Peakall and Smouse 2006)計算微衛星體 DNA 的遺傳多樣性指數 A (number of effective allele)、 Ho (observed heterozygosity)及 He (expected heterozygosity)。此外亦計算各種之近交係數(inbreeding coefficient),以固定指數 (fixation index, F)來代表,F值與H的關係為H=1-F,故可以下公式進行F之計算。

$$F = 1 - \frac{Ho}{He} = \frac{1}{\theta + 1}$$

此外,為了評估這些族群之間的遺傳結構,我們將利用 GenAlEx v 6.41 (Peakall and Smouse 2006)進行分子變異分析(Analysis of Molecular Variance, AMOVA),進行 1000 次的重複模擬,並以 Φ-statistic 方法檢測群與群之間的差異,以 α=0.05 作為標準判斷遺傳變異分布在族群之間是否具有顯著的差異。此外,亦進行主座標分析 (Principle Coordinate Analysis, PCoA),檢測這些族群之間的遺傳組成的異質性 (heterogeneity),並估算第一軸、第二軸及第三軸所解釋之變異量進行區分,藉第一、二軸之變異量判斷樣本間是否有明顯的遺傳界線,以及該界線是否與地理或族群分群一致。

在台東蘇鐵野生族群的遺傳結構及遺傳組成檢測上,我們同時進行 Bayesian-clustering assignment test,評估亞族群結構。我們使用STRUCTURE v. 2.3.3 軟體(Falush et al. 2003; Falush et al. 2007; Pritchard et al. 2000)進行此項分析,作為評 估單一樣本歸屬於哪一族群的測試(assignment test)。藉由計算各歸群數(K)的事後機 率(posterior probability)以獲得Mean $L_nP(K)$,並參照Evanno method (Evanno *et al.* 2005)以 $L_n'(K)$ [= $L_nP(K) - L_nP(K - 1)$]、 $|L_n''(K)|$ [= $|L_n'(K + 1) - L_n'(K)|$]、 ΔK [= m(|L''(K)|)/s[L(K)], m Bs 分別為平均值及標準差,評估最佳的分群數(K值)。根據Evanno*et al.* $(2005)的建議,當K愈大時標準差會愈大,因此以校正過標準差的<math>\Delta K$ 所 得的結果會是最佳的分群數。我們設定 $K = 1 \sim 10$,以admixture model (Hubisz *et al.* 2009)進行100,000次burn-in periods及接續1,000,000次的模擬,並重覆20次運算,再 將所得結果(Result file)進行壓縮並上傳至網路軟體STRUCTURE HARVESTER v. 0.6.8 (Earl and vonHoldt 2011)進行運算,得到最佳的K值。求得最佳的K值後(根據結

果,K = 2為最佳的分群數),再重複以admixture model進行1,000,000次burn-in periods 及10,000次的模擬,並繪出各樣本之遺傳組成比例。

4. 台東蘇鐵野生族群遺傳分布-地理分布結構分析

為了解族群結果與地理間之關係,我們利用 Geneland 4.0 軟體 (Guillot et al. 2005) 進行遺傳組成分析,這套運算法可以結合遺傳與地理訊息,並以 Markov chain Monte Carlo (MCMC)運算法進行貝氏運算 (Bayesian approach)來推估個體或族群遺傳組 成 (assignment test)及其在空間上的分佈,並偵側出可能偏離哈溫平衡 (Hardy-Weinberg)及連鎖平衡 (linkage equilibrium)的族群結構,藉此了解本研究的樣 本可區分為幾個分群以及這些分群的空間分佈。在此之前,為評估最合適的分群數 量 (K),我們由 K=1-20 各進行 10 次重覆的獨立模擬運算,每次的獨立運算先去除 30,000 的 burn-in 代數,再進行 500,000 代取樣,每 100 代取樣一次,運算時 Poisson process 最大事件機率值設為 100,Poisson-Voronoi tessellation 的核心點 (nuclei)最大 值設為 300,並以 mixture models 進行模擬。模擬結束後,我們分別計算這 10 個重 覆運算的 log posterior probability 平均值,後續結果將以具有最佳 log posterior probability 平均值的分群數量進行討論。

5. 台東蘇鐵野生族群有效族群大小初估

有效族群大小之估算將利用連鎖不平衡進行估算。此方法利用 Burrows' composite 評估在有限族群大小下,不同對偶基因頻率之間的關聯性(Waples 2006; Waples and Do 2008)。由於即使在逢機交配的情形下,配子在有限族群內會因為族群大小的差 異導致自由配對上的偏差,因此在獨立的染色體上的基因座(即 physically unlinked loci),亦可能因為 chance effect 而估計出連鎖不平衡(Hamilton 2009)。此外,族群大 小的變化、非逢機配對、突變壓力等皆會影響連鎖不平衡的估計值,而這些因子亦 反映出有效族群大小。因此我們將利用中性演化的微衛星體基因座,利用連鎖不平 衡的估算計算有效族群大小。此分析擬利用 Waples and Do (2008)發展出來的軟體 LDNE 協助估算,在此軟體設定上,採以最寬鬆的方式(採計所有的對偶基因座)來評 估台東蘇鐵各族群之有效族群大小。

6. 台東蘇鐵野生族群及境外栽種植株遺傳組成比較

根據境外植株樣本所得之微衛星體 DNA 遺傳資訊,與原生地之植株遺傳組成進行 PCoA及 Bayesian clustering assignment test,藉由不同歸群的模式判斷境外栽種植株 的來源。我們希望能藉此子題之檢測了解這些境外栽種植株的來源是否多來自於較 易到達的紅葉族群第 19 林班,抑或可能來自於其他林班甚至來自於海岸山脈的野 生族群。

第三章 研究成果

本研究在台東蘇鐵的部分,共採集紅葉族群、海岸山脈族群樣本合計 167 株、境外 栽植之台東蘇鐵樣本共計 46 株。另外亦蒐集琉球蘇鐵野生族群 34 個樣本及栽種植 株 14 個樣本進行比較。以下針對各項分析結果進行描述。

1. 中性基因座檢測

中性基因座檢測目的是挑出分化程度過高或過低的基因座並加以排除,以避免這些 分化程度偏差較大的基因座影響整體的遺傳多樣性的表現。所獲得之 12 個多型性 基因座,利用 Beaumont and Nichols (1996)提出之 DFdist 方法,檢測分化指數 F_{ST} 在遺傳變異的分布上是否位於 95%信賴區間內作為中性演化的依據,我們以 LOSITAN 軟體(Antao et al. 2008)檢測 12 個微衛星體 DNA 基因座的遺傳變異/分化 分布,檢測出兩個基因座因遺傳變異度及分化程度太低,位於 95%信賴區間以外, 成為離群值(outliers),視為可能受到平衡天擇(balancing selection)的基因座(圖一), 通常分化過低的基因座可能是因為受到異型合子率過高的影響,而異型合子率過高 則可能是由於受到平衡天擇(balancing selection)的壓力所致,該天擇壓力青睞兩種不 同對偶基因的組合,而增加其適合度,故族群中存在高比例的異型合子,故稱為平 衡天擇。其餘十個基因座均可視為中性演化之基因座,故在後續分析中將以十個基 因座進行分析,以避免外在(天擇)壓力干擾分析結果。

2. 台東蘇鐵野生族群哈溫平衡(Hardy-Weinberg equilibrium)檢測

哈溫平衡描述在理想條件下,基因頻率不隨著時間(世代)而有改變。因此哈溫平衡 的檢測將可協助判斷族群是否符存在遺傳結構、族群太小、不逢機交配等違背理想 族群的條件。在所有族群進行哈溫平衡的檢測後,發現所有基因座皆偏離哈溫平衡 (表二)。若區分紅葉族群(含 19 林班、23 林班及 40 林班)及海岸山脈族群,則紅葉 族群有 90%的基因座偏離哈溫平衡,海岸山脈有 70%的族群偏離哈溫平衡,顯示這 兩個地理區的台東蘇鐵族群在族群內可能仍存有遺傳結構或其他偏離哈溫平衡的 條件(如有效族群太小、非逢機交配等)。在紅葉族群中,19 林班、23 林班及 40 林 班分別有 80%、30%及 50%的基因座偏離哈溫平衡,顯示出 23 林班為所有林班地 內最符合理想條件的族群。

3. 台東蘇鐵野生族群對偶基因頻率

在各族群的對偶基因頻率的估算中,將所有的野生材料區分為紅葉族群三個林班及 海岸山脈等四個主要族群分別區分。在十個中性基因座的檢測中可清楚看出紅葉族 群的三個林班彼此間的對偶基因組成較為類似,雖有部分基因座的對偶基因頻率略 有差異,但其差異程度遠低於與海岸山脈的對偶基因組成及頻率 (圖二)。海岸山脈 族群個基因座的主要對偶基因(dominant alleles)大部分可在紅葉族群中發現,僅少數 屬於特有對偶基因(private alleles,如基因座 Cy-250,圖二),但在紅葉族群各個林 班中未必是其主要對偶基因,反之亦然。此外,與紅葉族群三個林班的比較中,海 岸山脈族群中亦見到較多的稀有且特有之對偶基因(rare & private alleles)。從對偶基因頻率的比較中可略見海岸山脈與紅葉族群的遺傳分化主要來自共有對偶基因的頻率不同所致。

4. 台東蘇鐵野生族群遺傳多樣性檢測

遺傳多樣性的檢測中,台東蘇鐵野生族群具變異的對偶基因數(No. of different alleles, Na)為 6.5±0.885,有效對偶基因數 A 為 2.965±0.395、異型合子觀測值 Ho 與期望值 He 分別為 0.453±0.040 及 0.625±0.034,近交係數則偏低,為 0.279±0.043,這與蘇 鐵類植物為雌雄異株有關(表三)。兩地理區域(紅葉族群及海岸山脈)的遺傳歧異度相 似,各指數無顯著差異,有效對偶基因數 A 分別為 2.764±0.398 及 2.586±0.347 (P = 0.7218, Student's t test),異型合子觀測值 Ho 則分別為 0.468±0.042 及 0.410±0.051 (P = 0.4004),異型合子期望值 He 分別為 0.590±0.040 及 0.548±0.062 (P = 0.5248),紅 葉族群的近交係數雖略為偏低($F = 0.206\pm0.044$),但與海岸山脈($F = 0.254\pm0.065$)仍 無顯著差異(P = 0.5849)。

紅葉族群三個林班的比較中,23 林班的異型合子觀測值及期望(Ho = 0.509±0.030, He = 0.567±0.033)值均略高於19林班(Ho = 0.428±0.060, He = 0.532±0.055)及40林班 (Ho = 0.509±0.030, He = 0.567±0.033),但 Student's t test 的結果均未呈現顯著的差異 (Ho 及 He: 19 林班 vs. 23 林班 P = 0.2461及0.5931;19 林班 vs. 40 林班 P = 0.6724 及0.8050;23 林班 vs. 40 林班 P = 0.4581及0.7734)。而在近交係數上,23 林班亦 呈現出較低的近交係數(F = 0.097±0.040),呈現其族群內個體間之逢機交配比例較高。 而19 林班(F = 0.205±0.080)、23 林班的近交係數(F = 0.178±0.084)則略較23 林班高 (但仍無顯著差異:19 林班 vs. 23 林班 P = 0.2249;19 林班 vs. 40 林班 P = 0.7582; 23 林班 vs. 40 林班 P = 0.3627, Student's t test)。近交係數的結果與哈溫平衡的檢測 大致吻合,即23 林班偏離哈溫平衡的基因座比例最低,其近交係數之結果亦呈現 逢機交配的情形。

5. 族群遺傳結構檢測

5.1 台東蘇鐵野生族群分子變異分析(AMOVA)

遺傳結構的檢測中,首先以 AMOVA 進行紅葉族群、海岸山脈兩地理區及 19 林班、 23 林班、40 林班族群之遺傳變異分析(表四),發現大多數的遺傳變異存在於族群內 (71%),各族群的遺傳變異分布有明顯的差異($\Phi_{ST} = 0.290, P = 0.001$),而區域內族 群間的遺傳變異佔了 11%,彼此間的遺傳變異亦有明顯的差異($\Phi_{SC} = 0.134, P = 0.001$),海岸山脈與紅葉族群區域間的遺傳變異佔了 18%,亦有顯著差異($\Phi_{CT} = 0.180, P = 0.001$)。此結果顯示台東蘇鐵在地理區間及地理區內均有明顯的族群結構,這個 結果與 Huang et al. (2001)利用葉綠體 DNA 及粒線體 DNA 檢測紅葉族群與海岸山脈 族群結構,推論兩地理區之間的遺傳分化低之結果略有不同(cpDNA $F_{ST} = 0.0056$; mtDNA $F_{ST} = 0.021$)。這可能是由於微衛星體 DNA 之演化速度較胞器 DNA 快,因 此利用葉綠體DNA及粒線體DNA無法偵測出近期之遺傳分化,而Huang et al. (2001) 亦推論其分化低且共享大多數的單套型(haplotypes)可能是由於保存大量早於更新 世冰期之祖先型變異(ancestral polymorphism),而無法反映近期發生之地理分化。

5.2 主座標分析(PCoA)

主座標分析的結果可將台東蘇鐵與琉球蘇鐵大致分成兩大群,但有部分個體在遺傳 組成上有些許重疊(圖三 A)。而兩物種之栽種植株的遺傳分布皆與其野生族群有很 高的重疊性,唯有少數台東蘇鐵的境外栽種植株併入琉球蘇鐵群中(圖三 A)。台東 蘇鐵的境外栽種植株的遺傳分布多與紅葉族群重疊,而未與海岸山脈族群重疊,顯 示其來源可能主要來自紅葉族群。為了解台東蘇鐵野生族群的遺傳結構,我們將野 生族群重新作一次 PCoA,結果顯示台東蘇鐵在地理區域之間有明顯的遺傳分化, 海岸山脈族群與紅葉村的族群在第一軸(可解釋 28.40%之遺傳變異)即可大略區分, 而紅葉族群內的三個林班雖各自成團,但彼此之遺傳組成相互重疊而不易區分,顯 示這三個林班之間的遺傳關係相當接近(圖三 B)。

5.3 台東蘇鐵野生族群貝氏歸群分析(Bayesian clustering analysis)

利用 STRUCTURE 軟體進行貝氏歸群分析之結果,當分群數(K)為2時, $\Delta K = 2117.92$ 為最高,且根據 Ln'(K)及|Ln''(K)|,甚至 LnP(K)之結果皆支持 K = 2 為最好的分群 數,具有最高之解析度(圖四)。我們根據此結果重複模擬後,顯示當區分為二群時, 恰好將海岸山脈及紅葉族群區分開來(圖五),23 林班及 40 林班則分別檢測出少數 個體帶有較多的海岸山脈基因型。我們也同時進行 K = 3 及 K = 4 之模擬,評估遺 傳界線是否存在於族群或林班間。當 K = 3 時,海岸山脈亦被區分開來,而 19 及 40 林班擁有較多相似的基因組成;而 K = 4 時,海岸山脈雖仍具有差異較高的遺傳 組成,但有部分個體被偵測出帶有部分屬於紅葉族群的遺傳成分,而紅葉族群中, 40 林班的基因組成最為混亂,除帶有許多 19 林班及 23 林班的主要遺傳成分外,19 林班及 23 林班也檢測出許多屬於 40 林班的主要遺傳成分(圖五)。此結果顯示台東 蘇鐵的族群結構不僅發生在地理區域間,在紅葉族群內不同林班間,甚至林班內都 存在著遺傳結構。

6. 台東蘇鐵野生族群遺傳分化及基因交流

根據兩兩比較的族群遺傳分化指數(pairwise Φ_{ST})結果顯示無論在不同地理區之間 (即海岸山脈與紅葉族群)或是在紅葉族群內各林班之間的遺傳分化皆呈現顯著(P < 0.001,表五)。海岸山脈與紅葉族群內各林班的遺傳分化指數 Φ_{ST} 為0.245~0.356之 間,而紅葉族群各林班間的分化指數則介於 0.110~0.176 之間,其中僅一河之隔之 23 林班與 40 林班的分化指數最低($\Phi_{ST} = 0.110$),而 19 林班與 40 林班間除有河流相 隔外,還受山稜阻擋而有較高之分化指數($\Phi_{ST} = 0.176$)。而基因交流指數(Nm)與分 化指數成倒數關係,其意義代表每一世代與其他族群之間存在基因交流的有效數量, 因此由表五可知紅葉族群內三個林班間每一世代有效之基因交流數約為1~2個個體, 而紅葉族群與海岸山脈之間的基因交流有效數約為 0.45~0.77 之間。由上述估計值 可知雖不同族群間有明顯的族群分化,但仍可藉少數成功的基因交流維持遺傳組成 的同質性,尤其是地理距離較近之紅葉族群內的不同林班。此外,由於蘇鐵種子體 積大重量重,多為重力落種或由小型哺乳類動物散播,不易長距離散播,因此推測 基因交流主要靠花粉傳播,而海岸山脈與紅葉族群間的基因交流指數不低,除可能 受共同祖先保留之遺傳變異相同所致之外,亦不排除接受到境外栽種植株之花粉。

7. 台東蘇鐵野生族群遺傳分布-地理分布結構分析

遺傳分布與地理分布的結構以 Geneland 進行分析,其結果顯示最好的分群數為 4, 這 4 個族群分別對應到 19、23、40 林班及海岸山脈台東蘇鐵自然保護區。此外, 為了解各地區需特別劃定及保護的區域,我們也針對這四個族群探究其可能的亞分 群,19 林班可細分為 2 個亞分群,23 林班與 40 林班因地理距離較近,合併分析共 可區分為 6 個亞分群,海岸山脈則可區分為 4 個亞分群。此遺傳與地理結構之分析 顯示台東蘇鐵野生族群在遺傳上有很明顯的亞族群結構,根據 Geneland 建構之遺傳 地理分布圖可知即使在亞族群結構內,具有相似遺傳組成的個體並非聚集成同一 colony。此結果顯示台東蘇鐵在族群或亞族群(林班)之間有很明顯的遺傳結構,可能 與其種子散播距離短有關,但族群或亞族群內的亞結構則呈現這些植株再短距離間" 移動"的可能性,可能與其種子受囓齒類動物短距離的攜帶或林下的花粉散播受限 有關。這些主要的四個分群與亞群的主要分布區域以不同的色塊呈現於圖六。

7. 區別檢定(assignment test)

我們利用區別檢定(assignment test)檢測受檢之野生族群植株樣本之基因型是否屬於 其他族群或林班,以及境外栽種植株的可能來源。在紅葉族群中並未檢測出來自海 岸山脈族群的個體,然而在海岸山脈中卻檢測出兩個個體來自紅葉族群 40 林班。 此外,在紅葉族群的三個林班之間,19 林班及 23 林班各檢測出一植株之基因型來 自對方族群,但分別有 5 及 7 株植株之基因型來自 40 林班;而 40 林班內則各有 4 及 9 株個體被檢測出攜帶自 19 林班及 23 林班的基因型。此結果顯示 40 林班與 19 林班、23 林班之基因混雜情況最為嚴重,可能扮演連結 19 林班及 23 林班的媒介。

加入琉球蘇鐵後,檢測結果顯示野生琉球蘇鐵和野生台東蘇鐵的來源皆屬自己本身, 未偵測出屬於對方物種之植株。境外栽種的琉球蘇鐵在此區別檢定中皆屬於野生的 琉球蘇鐵,但在46株境外栽種的台東蘇鐵的檢測中,則有四株屬於琉球蘇鐵,其 餘42株則皆來自紅葉族群,未檢測出屬於海岸山脈族群的植株。此結果顯示大多 數境外栽種的台東蘇鐵的來源可能仍為族群量較大且較易到達的紅葉族群,且境外 栽種的植株可能有部分帶有較高比例的琉球蘇鐵的遺傳成分,可能是受過去共有之 祖先多型性(common ancestral polymorphisms)或近代的基因滲入(introgression)所致, 這與我們先前利用 AFLP 進行的檢測結果一致。

8. 台東蘇鐵野生族群有效族群大小估算

有效族群大小的計算利用連鎖不平衡的檢測,根據 Waples and Do (2008)發展出來的 軟體 LDNE 進行估算,以 LDNE 估算有效族群大小的前提為使用中性基因座、族群 間的關係近且世代不重疊,且不易受到高遷移率(high migration rate)之影響(Waples and England 2011)。這些假設與台東蘇鐵的情況相近。據此計算所得之有效族群大 小(Ne)列表於表七,紅葉族群的有效族群大小約為海岸山脈的兩倍,但遺傳多樣性 指數卻無顯著差異(表三),顯示雖然海岸山脈族群的遺傳多樣性與紅葉族群相當, 但由於海岸山脈族群內的配子非逢機配對的比例較高(non-random association),導致 海岸山脈族群大小的估算量下降,此結果亦與其近交係數偏高一致(表三)。而在紅 葉族群內三個林班的檢測中,呈現有效族群大小的明顯差異,40林班擁有最高的有 效族群大小,但變異很高(Ne = 93.1, 95%CI = 41.7~2771.6),顯示其族群的遺傳組成 來源變化較大,在族群內呈現亞族群結構,因此未來需更近一步對其族群內的結構 進行研究,此結果亦與貝氏歸群的結果一致(圖五)。分布在 40 林班對岸之 23 林班 則呈現最低的有效族群大小(Ne = 20.5, 95%CI = 14.3~30.6), 然其近交係數僅為 0.097±0.040 (表三),顯示該林班之有效族群大小偏低不是因為非逢機的配子配對, 推論可能是由於瓶頸效應(bottleneck effect)或棲地零碎(fragmentation)所致(England et al. 2010)。由於瓶頸效應後的族群擴增會使 rare alleles 增加,有效對偶基因數(A) 會下降,但23 林班的有效對偶基因數不低於其他族群 $(A = 2.445 \pm 0.205, 表 =)$,因 此推論族群的衰减是近代發生的事,因此 rare alleles 增加的情況還未顯現,這個情 況與分布在墨西哥的蘇鐵 Dioon angustifolium (Zamiaceae)類似(Gonzalez-Astorga et al. 2005) •

第四章 討論與建議

本研究之結果呈現台東蘇鐵野生族群之遺傳結構受到地理隔離的影響,因此台東蘇 鐵台東紅葉村蘇鐵保留區及海岸山脈蘇鐵保護區境內之族群形成明顯的遺傳分化 ($\Phi_{CT} = 0.180$,表四;與19林班、23林班、40林班之分化指數 Φ_{ST} 分別為 0.356,0.259, and 0.245,表五)。除長距離的族群遺傳分化之外,在 Geneland 的分析中亦呈現台東 蘇鐵在族群或亞族群內亦存在遺傳-地理結構。此結果顯示保育工作之實施需考慮地 理區,在海岸山脈及紅葉蘇鐵保留區需分別進行種原保存。

此外,在紅葉族群內亦呈現明顯的遺傳結構,根據結果分別呈現出近交(inbreeding) 情況或非逢機交配(non-random association) (40 林班),以及族群大小衰減或棲地零 碎化的現象(23 林班)。近交係數與異型合子的分析及評估中,我們推論台東蘇鐵的 有效族群大小可能會受到有限的種子傳播距離與有效授粉率的影響,由於台東蘇鐵 多分布於邊坡林下,重力落種使得種子傳播距離短,僅能靠小型囓齒目動物的短距 離傳播將種子帶至不遠處;根據近緣種琉球蘇鐵的研究,其有效傳粉距離僅約2公 尺,短距離的有效傳粉亦可能提高近交的機會,因此我們推斷當台東蘇鐵族群個體 數較小或分布較為稀疏時,近親交配加上種子的短距離傳播便可能是造成族群或亞 族群內的遺傳結構的原因。此外,在澤米屬蘇鐵(Zamia fairchildiana)的生態學研究 中亦指出棲地的破壞會導致族群的亞結構化,並造成交配系統如性別比例的變化等 (Lopez-Gallego and O'Neil 2010),而棲地環境的改變(如光照、溫度、溼度、樹冠間 隙等)亦會造成蘇鐵植物族群的零碎化現象(Lopez-Gallego 2008)。因此台東蘇鐵原生 棲地內的水土流失、崩塌、樹冠更新等生態因子的變化都有可能影響台東蘇鐵亞族 群的遺傳結構,進而影響其有效族群大小。

而在我們先前的研究中亦曾指出靠近人為活動區域的 19 林班有較高的機會接受外來基因,而其棲地亦較其他林班容易接受外來干擾(人為破壞、外來種入侵等),即 使該族群的遺傳多樣性維持一定的水準,這些外來因子都可能造成蘇鐵植物的遺傳 結構改變(Gonzalez-Astorga et al. 2008; Gonzalez-Astorga et al. 2005; Gonzalez-Astorga et al. 2006)。因此台東蘇鐵目前之遺傳多樣性的保育工作需同時考 量地理分布、人為活動與棲地維護(以維持生長環境及傳粉者的活動範圍)。

如同大多數蘇鐵群(cycads)的研究一般,台東蘇鐵也有很明顯的遺傳結構,族群內蘊 涵大多數的遺傳變異 (Chiang et al. 2009; Huang et al. 2001; Huang et al. 2004)。台東 蘇鐵分佈狹隘,僅存在於台灣東海岸山區,加以其受到長期與相近物種隔離、部分 等位基因 (allele)位在特殊的演化分枝上(Chiang et al. 2009),我們的結果亦顯示台東 蘇鐵亟待良善的保育政策來協助復育,所以台東蘇鐵應視為一個獨立的「有效演化 單元」 (Evolutionary Significant Unit, ESU) (Moritz 1994)。本研究藉由高變異的遺傳

標記提供台東蘇鐵的遺傳結構訊息,相信能提供台東蘇鐵保育政策擬定一項參考, 並利用遺傳與地理資訊的結果來找出具有特殊遺傳結構的亞分群,作為規畫「管理 單元」(management units, 簡稱 MUs)的依據。

因此根據本研究,我們提出以下的建議:

- (1)台東蘇鐵的族群間有明顯的遺傳分化,因此在進行境外保育時,建議要分別在 19、23、40林班及海岸山脈進行採種,並分開栽種避免混淆。
- (2)由於台東蘇鐵野生族群的遺傳組成在族群內甚至林班內就有遺傳結構,根據 Geneland的分析,其相似基因組成個體的地理分布半徑僅數百公尺甚至數十公 尺,因此建議採種時可以百公尺為單位劃分採種區域半徑作為規劃管理單元 (MUs),各採種區域間的種苗不宜混種。唯保育單元的規劃可大可小,建議由管 理經營單位實際執行面考量保育單元的尺度。本研究提供較細緻的分群(亞群), 作為提供管理單位執行上的參考。
- (3)除境外保育外,我們亦建議同步進行境內的種苗復育。由於傳粉距離與種子傳播的距離短是台東蘇鐵固有的特性,因此其野生族群的遺傳結構、亞結構皆為自然情形,站在保育遺傳學的角度,建議境內種苗的復育最好能在母株附近實施,盡量避免刻意的將種子栽種在離母株較遠的區域。然而境內復育的難度較高,若境內復育的實施有困難,建議可將種子、種苗仔細紀錄後攜至境外進行栽種、復育,然為避免受近緣種琉球蘇鐵之花粉污染,建議在植株達青少年時期未結毬果前,便進行境內移植。
- (4)海岸山脈的植株密度低,傳粉受限導致結實率過低,建議未來的復育工作可以 側芽進行繁殖,或進行組織培養的方式增加數量。
- (5)目前境外復育的種源多來自19林班,建議未來的採種應針對各林班分別進行, 並仔細紀錄採集樹種編號、GPS位置等,以供未來追蹤。採集種子亦須依不同母 株進行區分,避免將不同母株的子嗣混淆,造成未來追蹤上的困難。攜至境外 進行栽種時亦應作好編號管理,以助未來移植、栽種時可供對照。
- (6) 境外復育植株建議在栽種時加大栽種間距,以降低介殼蟲擴散速率,並可同時施予農藥殺蟲或降低害蟲干擾,以提高種苗存活率。在人工苗圃進行化學防治並不會影響野生棲地的生態環境。
- (7) 在區別檢定的分析中,境外栽種的植株中檢測到屬於琉球蘇鐵型的台東蘇鐵植株,雖其來源除近代的基因滲入外,仍無法排除是共享祖先的遺傳變異所致,但為避免外來種的基因污染問題,仍建議建立境外復育植株的遺傳身分證,若未來考慮移植時亦應避免移入這些個體。
- (8) 野生族群內的台東蘇鐵未見測出屬於琉球蘇鐵型的植株,但境外栽種的植株有高達 9%的比例屬餘琉球蘇鐵,因此推測的確因人為栽種之故造成部分的基因污染。建議在境外栽種上應盡量建立台東蘇鐵與琉球蘇鐵的隔離帶,避免混種。因琉球蘇鐵的研究中有效的傳粉距離約在 2~10 公尺,故建議隔離帶的距離至少在10 公尺以上,並可在隔離帶間栽植其他樹種進行隔離。

第五章 參考文獻

- Alvarez-Yepiz JC, Dovciak M, Burquez A (2011) Persistence of a rare ancient cycad: Effects of environment and demography. Biological Conservation 144:122-130
- Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: A workbench to detect molecular adaptation based on a F_{ST}-outlier method. BMC Bioinformatics 9:323
- Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London, Series B: Biological Sciences 263:1619-1626
- Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025-2035
- Chaw SM, Shih ACC, Wang D, Wu YW, Liu SM, Chou TY (2008) The mitochondrial genome of the gymnosperm *Cycas taitungensis* contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution 25:603-615
- Chen HY, Deng LK, Jiang Y, Lu P, Yu JN (2011) RNA editing sites exist in protein-coding genes in the chloroplast genome of *Cycas taitungensis*. Journal of Integrative Plant Biology 53:961-970
- Chiang YC, Hung KH, Moore SJ, Ge XJ, Huang S, Hsu TW, Schaal BA, Chiang TY (2009) Paraphyly of organelle DNAs in *Cycas* Sect. *Asiorientales* due to ancient ancestral polymorphisms. BMC Evolutionary Biology 9:161
- Cibrian-Jaramillo A, Daly AC, Brenner E, Desalle R, Marler TE (2010) When North and South don't mix: genetic connectivity of a recently endangered oceanic cycad, *Cycas micronesica*, in Guam using EST-microsatellites. Molecular Ecology 19:2364-2379
- Cibrian-Jaramillo A, Marler TE, DeSalle R, Brenner ED (2008) Development of EST-microsatellites from the cycad *Cycas rumphii*, and their use in the recently endangered *Cycas micronesica*. Conservation Genetics 9:1051-1054
- Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources:DOI: 10.1007/s12686-011-9548-7
- England PR, Luikart G, Waples RS (2010) Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conservation Genetics 11:2425-2430
- Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620
- Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics

164:1567-1587

- Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7:574-578
- Gonzalez-Astorga J, Vovides AP, Cabrera-Toledo D, Nicolalde-Morejon F (2008) Diversity and genetic structure of the endangered cycad *Dioon sonorense* (Zamiaceae) from Sonora, Mexico: Evolutionary and conservation implications. Biochemical Systematics and Ecology 36:891-899
- Gonzalez-Astorga J, Vovides AP, Cruz-Angon A, Octavio-Aguilar P, Iglesias C (2005) Allozyme variation in the three extant populations of the narrowly endemic cycad *Dioon angustifolium* Miq. (Zamiaceae) from North-eastern Mexico. Annals of Botany 95:999-1007
- Gonzalez-Astorga J, Vovides AP, Octavio-Aguilar P, Aguirre-Fey D, Nicolalde-Morejon F, Iglesias C (2006) Genetic diversity and structure of the cycad *Zamia loddigesii* Miq. (Zamiaceae): implications for evolution and conservation. Botanical Journal of the Linnean Society 152:533-544
- Gorelick R, Olson K (2011) Is lack of cycad (Cycadales) diversity a result of a lack of polyploidy? Botanical Journal of the Linnean Society 165:156-167
- Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Molecular Ecology Notes 5:712-715
- Hamilton MB (2009) Chapter 8: Molecular evolution Population Genetics. Wiliey-Blackwell, UK, pp 235-282
- Huang S, Chiang YC, Schaal BA, Chou CH, Chiang TY (2001) Organelle DNA phylogeography of *Cycas taitungensis*, a relict species in Taiwan. Molecular Ecology 10:2669-2681
- Huang S, Hsieh HT, Fang K, Chiang YC (2004) Patterns of genetic variation and demography of *Cycas taitungensis* in Taiwan. Botanical Review 70:86-92
- Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9:1322-1332
- Indira PS, Natasha G, Akanksha B, Vibhuti G, Kunal M, Reema G (2011) Genetic structure of an endangered *Cycas revoluta* using RAPD markers. Research Journal of Biotechnology 6:50-55
- Jian SG, Zhong Y, Liu N, Gao ZZ, Wei Q, Xie ZH, Ren H (2006) Genetic variation in the endangered endemic species *Cycas fairylakea* (Cycadaceae) in China and implications for conservation. Biodiversity and Conservation 15:1681-1694
- Ju LP, Kuo CC, Chao YS, Cheng YP, Gong X, Chiang YC (2011) Microsatellite primers in the native perennial cycad *Cycas taitungensis* (Cycadaceae). American Journal of Botany 98:E84-E86

- Keppel G (2002) Low genetic variation in a Pacific cycad: conservation concerns for *Cycas seemannii* (Cycadaceae). Oryx 36:41-49
- Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Molecular Biology and Evolution 23:482-490
- Kyoda S, Setoguchi H (2010) Phylogeography of *Cycas revoluta* Thunb. (Cycadaceae) on the Ryukyu Islands: very low genetic diversity and geographical structure. Plant Systematics and Evolution 288:177-189
- Lopez-Gallego C (2008) Demographic variation in cycad populations inhabiting contrasting forest fragments. Biodiversity and Conservation 17:1213-1225
- Lopez-Gallego C, O'Neil P (2010) Life-history variation following habitat degradation associated with differing fine-scale spatial genetic structure in a rainforest cycad. Population Ecology 52:191-201
- Moritz C (1994) Defining 'Evolutionarily Significant Units' for conservation. Trends Ecology and Evolution 9:373-5
- Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science 334:796-799
- Peakall ROD, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288-295
- Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959
- Radha P, Singh R (2011) Amplified fragment length polymorphism (AFLP) studies on Indian *Cycas* species. African Journal of Biotechnology 10:6381-6386
- Travis JMJ, Munkemuller T, Burton OJ, Best A, Dytham C, Johst K (2007) Deleterious mutations can surf to high densities on the wave front of an expanding population. Molecular Biology and Evolution 24:2334-2343
- Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7:167-184
- Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8:753-756
- Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633-644
- Xiao LQ, Ge XJ, Gong X, Hao G, Zheng SX (2004) ISSR variation in the endemic and endangered plant *Cycas guizhouensis* (Cycadaceae). Annals of Botany 94:133-138
- Xiao LQ, Gong X (2006) Genetic differentiation and relationships of populations in the *Cycas balansae* complex (Cycadaceae) and its conservation implications. Annals of Botany 97:807-812
- Xiao LQ, Moller M, Zhu H (2010) High nrDNA ITS polymorphism in the ancient extant seed plant *Cycas*: Incomplete concerted evolution and the origin of pseudogenes. Molecular Phylogenetics and Evolution 55:168-177

- Xie JG, Jian SG, Liu N (2005) Genetic variation in the endemic plant *Cycas debaoensis* on the basis of ISSR analysis. Australian Journal of Botany 53:141-145
- Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Molecular Ecology 11:1-16
- Zhan QQ, Wang JF, Gong X, Peng H (2011) Patterns of chloroplast DNA variation in *Cycas debaoensis* (Cycadaceae): conservation implications. Conservation Genetics 12:959-970
- Zhong ZR, Li N, Qian D, Jin JH, Chen T (2011) Maternal inheritance of plastids and mitochondria in *Cycas* L. (Cycadaceae). Molecular Genetics and Genomics 286:411-416

附表

表一 用於本研究之微衛星體 DNA 引子序列及粘合温度(annealing temperature)

Primer Name	Sequence	Annealing Temp. (°C)
Cycas(ATG)(TA)(CA)F33	5'-gAAAATgCTTTgATgTTCCC-3'	58°C ~ 60°C
Cycas(ATG)(TA)(CA)R43	5'-TgggCCAACTTTAAgCACAC-3'	
Cycas(TA)F1	5'-TCTgTgCCCAAATCATCATC-3'	$57^{\circ}\text{C} \sim 60^{\circ}\text{C}$
Cycas(TA)R63	5'-CAACggCgTCTAgTTgTTgC-3'	
Cycas(TA)F31	5'-TAgCATCCCgAATTTgCCCC-3'	$58^{\circ}\text{C} \sim 60^{\circ}\text{C}$
Cycas(TA)R63	5'-CAACggCgTCTAgTTgTTgC-3'	
Cycas(TA)(TTTC)F63	5'-CACCATCTggCAgTCATgAT-3'	58°C ~ 60°C
Cycas(TA)(TTTC)R60	5'-CCCCTgAACTgTCAAACAgg-3'	
Cy272-F	5'-TggTgTgTATTTTgCATTTTCA3'	52°C ~ 55°C
Cy272-R	5'-TgggCATggAAAACAAgTTAg3'	
Cy280-F	5'-CAgAgACTATTCgggCCAAg3'	$57^{\circ}\text{C} \sim 60^{\circ}\text{C}$
Cy280-R	5'-TCAAACCCTTCCACACATCA3'	
Cy284-F	5'-TTTggTCCACgTTACCATgA3'	56°C ~ 60°C
Cy284-R	5'-TCAACggCgTCTAgTTgTTg3'	
Cy226-F	5'-ACAgggCATCggAACACTAC-3'	56°C ~ 60°C
Cy226-R	5'-CTACTCTTCggCTTCCAACg-3'	
Cy240-F	5'-ATTgCggAACgAATATCgAC-3'	58°C ~ 59°C
Cy240-R	5'-TATCgCgAggCCATAggTAg-3'	
Cy250-F	5'-ATgAACAAgCggCTgAgTCT-3'	54°C ~ 56°C
Cy250-R	5'-CCCACCCTCTTTCTCTCTCC-3'	
Cy266-F	5'-AAATgCTTTgATgTTCCCAAA-3'	$56^{\circ}C \sim 60^{\circ}C$
Cy266-R	5'-ATgCAATgCTCAACAAgCTg-3'	
Cy270-F	5'-CggATTTggAggTTCAAAgA-3'	$57^{\circ}\text{C} \sim 60^{\circ}\text{C}$
Cy270-R	5'-CAgTTTgTATAgCTgAACAAgAATAgA-3'	

表二 哈溫平衡檢測,以下列表為各基因座在各族群之卡方檢測(χ² test)之 P值, P<0.05 視為偏離哈 溫平衡。

基因座	所有族群	紅葉族群	19林班	23 林班	40林班	海岸山脈
Cycas(ATG)(TA)(CA)F33	0.000***	0.000***	0.007**	0.000***	0.000***	0.000***
Cycas(TA)F1	0.000***	0.000***	0.037*	0.001***	0.002**	0.000***
Cycas(TA)F31	0.000***	0.000***	0.000***	0.275 ^{ns}	0.654 ^{ns}	0.000***
Cycas(TA)(TTTC)F63	0.000***	0.000***	0.001***	0.000***	0.000***	0.000***
Cy272-F	0.000***	0.000***	0.000***	0.707 ^{ns}	0.610 ^{ns}	0.853 ^{ns}
Cy280-F	0.000***	0.000***	0.072 ^{ns}	0.260 ^{ns}	0.000***	0.000***
Cy284-F	0.000***	0.000***	0.000***	0.064^{ns}	0.003**	0.000***
Cy250-F	0.000***	0.231 ^{ns}	0.002**	0.346 ^{ns}	0.154 ^{ns}	0.355 ^{ns}
Cy266-F	0.003**	0.006**	0.024*	0.516 ^{ns}	0.084 ^{ns}	0.573 ^{ns}
Cy270-F	0.000***	0.018*	0.995 ^{ns}	0.306 ^{ns}	0.939 ^{ns}	0.002**

* *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001; ns, none significant.

表三 台東蘇鐵野生族群遺傳多樣性指數

	海岸山脈	紅葉族群	19林班	23 林班	40林班	所有族群
Ν	42	125	36	47	42	167
Na	4.0 ± 0.667	5.6±0.777	4.0±0.537	4.2 ± 0.467	4.3±0.616	6.5 ± 0.885
Α	2.586 ± 0.347	2.764 ± 0.398	2.432 ± 0.307	2.445 ± 0.205	2.566 ± 0.416	2.965 ± 0.395
Но	0.410 ± 0.051	0.468 ± 0.042	0.428 ± 0.060	0.509 ± 0.030	$0.457 {\pm} 0.062$	0.453 ± 0.040
Не	0.548 ± 0.062	0.590 ± 0.040	0.532 ± 0.055	$0.567 {\pm} 0.033$	0.548 ± 0.045	0.625 ± 0.034
F	0.254 ± 0.065	0.206 ± 0.044	0.205 ± 0.080	0.097 ± 0.040	0.178 ± 0.084	0.279±0.043

N: 樣本數

Na: 具有變異的對偶基因數

A: 有效對偶基因數

Ho: 異型合子觀測值

He: 型合子期望值

F: 近交係數

Source	df	S.S.	Est. Var.	%	Φ	Р
Among Regions	1	155.23	1.68	18%	0.180	0.001
Among Pops	2	97.95	1.02	11%	0.134	0.001
Within Pops	163	1078.77	6.62	71%	0.290	0.001
Total	166	1331.95	9.32	100%		

表四 分子變異分析(AMOVA)結果

	19林班	23 林班	40 林班	海岸山脈
19林班	-	0.176*	0.124*	0.356*
23 林班	1.167	-	0.110*	0.259*
40林班	1.763	2.030	-	0.245*
海岸山脈	0.452	0.716	0.772	-

表五 族群遺傳分化指數(Φ_{ST} ,對角線右上方)及基因交流指數(Nm,對角線左下方)

* P < 0.001 under 1000 permutations.

		甘仙	其他族群						
族群	自己	央他- 佐母	10 ++ 1JT	22 ++ tJT	40 11 1/1	治出上形	琉球蘇鐵		
		沃叶	1) 11	23 秋班	40 秋斑	体产山派	(野生)		
19林班	30	6	-	1	5	0	0		
23 林班	39	8	1	-	7	0	0		
40林班	29	13	4	9	-	0	0		
海岸山脈	40	2	0	0	2	-	0		
琉球蘇鐵(野生)	34	0	0	0	0	0	-		
琉球蘇鐵(栽種)	-	14	0	0	0	0	14		
台東蘇鐵(境外栽種)	-	46	15	15	12	0	4		

表六 區別檢定(Assignment test)檢測各族群樣本之可能來源

表七 利用連鎖不平衡(Linkage Disequilibrium, LD)計算有效族群大小估算

	Independent	$O_{\rm max} = 11 - 2$	$\mathbf{E}_{\mathbf{r}}$	Ne -	95% CIs			
	Comparisons	Overall r	Expected r		Parametric	Jackknife Loci		
海岸山脈	385	0.0371	0.0256	26.8	16.9-47.3	16.5-49.2		
紅葉族群	925	0.0141	0.0082	54.6	43.8-69.2	26.7-139.4		
19林班	392	0.0372	0.0302	45.8	23.9-146.3	19.3-506.1		
23 林班	451	0.0373	0.0227	20.5	14.3-30.6	10.5-45.1		
40 林班	473	0.0291	0.0256	93.1	41.7-2771.6	23.7-Infinite		
所有族群	1326	0.0138	0.0061	41.4	35.8-47.9	27.0-64.5		

Ne,有效族群大小,此數值為利用 LD 估算的值,其意義應視為相對值非絕對族群大小。

附圖

圖一中性檢測分析,利用 LOSITAN 軟體進行 DFdist 檢測各基因座之遺傳變異分布。灰色圓點表示 遺傳分化指數(F_{ST})低於 95%信賴區間,視為偏離中性演化之基因座(candidate loci under balancing selection)。

圖二 中性基因座對偶基因頻率圓餅圖。由此圖所示,紅葉族群三個林班之對偶基因頻率類似,但與 海岸山脈有明顯的不同。

Axis 1 (24.52%)

圖三 主座標分析(PCoA)結果。(A)台東蘇鐵野生族群進行分析的結果,顯示海岸山脈族群與紅葉族 群有較明顯的分群,紅葉族群三個林班彼此間有部分的重疊,但其遺傳組成仍可略為區分;(B)整合 台東蘇鐵及琉球蘇鐵進行的分析,其結果顯示台東蘇鐵與琉球蘇鐵的遺傳組成有部分的重疊,紅葉 族群的三個林班在遺傳組成上重疊性較高,並與海岸山脈族群略有區分;境外栽種的琉球蘇鐵與野 生琉球蘇鐵屬相同歸群,境外栽種的台東蘇鐵與紅葉族群的台東蘇鐵屬於相同歸群,但有少數個體 的遺傳組成偏向琉球蘇鐵群。

圖四 檢測貝氏分群分析(Bayesian clustering analysis)最佳分群數(K)之結果,其結果皆顯示 K = 2 為 最好的分群數。

圖五 貝氏分群分析(Bayesian clustering analysis)分群數(K)為2、3、4之結果。

圖六 利用 Geneland 對遺傳分布及地理分布進行結構分析。其結果顯示 (A)台東蘇鐵的遺傳-地理分 布可分成四群:海岸山脈、第 19 林班、第 23 林班及第 40 林班。(B) 海岸山脈族群可再區分為四個 亞群;(C)紅葉族群的第 23 及 40 林班可再區分為六個亞群;(D)第 19 林班可再區分為兩個亞群。黃 白色區域為該群或亞群之主要分布地理區,紅色區域為無分布或分布較少的地理區。

附錄

附錄一、紅葉村台東蘇鐵自然保留區地19林班、23林班及40林班採集區域分布圖。

附錄二、區別檢定(assignment test)結果

146 1. 12.15.	21. 14	لاه ماد			Assignme	nt Values (L	og likelihood	l)
禄本霓	物種	族群	19林班	23 林班	40林班	海岸山脈	CR 野生	Assigned Pop
19_101	台東蘇鐵	19 林班	-7.674	-9.048	-10.094	-15.953	-15.666	19林班
19_102	台東蘇鐵	19 林班	-7.180	-9.705	-9.709	-16.486	-16.838	19 林班
19_103	台東蘇鐵	19林班	-9.884	-11.411	-7.999	-12.607	-15.264	40 林班
19_104	台東蘇鐵	19 林班	-7.329	-7.737	-8.641	-14.542	-15.325	19 林班
19_106	台東蘇鐵	19 林班	-5.324	-7.829	-5.445	-13.030	-13.207	19 林班
19_107	台東蘇鐵	19 林班	-8.680	-9.134	-6.985	-11.527	-16.575	40 林班
19_108	台東蘇鐵	19 林班	-6.758	-9.494	-9.231	-18.059	-16.768	19 林班
19_109	台東蘇鐵	19林班	-9.292	-11.542	-12.053	-16.879	-17.923	19 林班
19_110	台東蘇鐵	19林班	-6.466	-9.540	-10.053	-18.393	-17.741	19 林班
19_111	台東蘇鐵	19林班	-9.344	-13.342	-11.507	-22.481	-17.288	19 林班
19 113	台東蘇鐵	19 林班	-6.805	-9.144	-10.837	-15.591	-14.702	19 林班
19 115	台東蘇鐵	19 林班	-7.960	-11.067	-10.963	-19.243	-14.735	19 林班
19_116	台東蘇鐵	19 林班	-9.409	-10.995	-13.897	-25.945	-20.535	19 林班
19_117	台東蘇鐵	19 林班	-9.004	-11.426	-12.026	-17.727	-16.081	19 林班
chem_1	台東蘇鐵	19 林班	-7.912	-9.135	-10.345	-19.332	-16.750	19 林班
chem_2	台東蘇鐵	19 林班	-6.968	-12.596	-9.955	-21.287	-15.351	19 林班
chem_3	台東蘇鐵	19 林班	-10.349	-13.165	-12.221	-20.791	-16.590	19 林班
chem_4	台東蘇鐵	19 林班	-4.958	-6.794	-7.169	-15.085	-14.298	19 林班
chem_5	台東蘇鐵	19 林班	-5.901	-7.592	-6.195	-15.922	-12.142	19 林班
chem 7	台東蘇鐵	19 林班	-5.783	-9.485	-5.603	-13.871	-14.452	40 林班
chem_8	台東蘇鐵	19 林班	-6.374	-7.721	-7.666	-14.506	-15.264	19 林班
chem_10	台東蘇鐵	19 林班	-5.798	-8.623	-7.052	-13.147	-15.754	19 林班
chem_11	台東蘇鐵	19林班	-9.790	-10.616	-9.809	-16.076	-18.416	19 林班
chem_12	台東蘇鐵	19 林班	-6.618	-9.893	-8.796	-13.942	-18.337	19 林班
chem_13	台東蘇鐵	19林班	-5.538	-9.027	-7.626	-16.897	-12.417	19 林班
chem_14	台東蘇鐵	19 林班	-6.678	-10.261	-10.223	-18.748	-15.634	19 林班
chem 15	台東蘇鐵	19 林班	-8.166	-6.851	-7.522	-17.603	-13.541	23 林班
chem 16	台東蘇鐵	19林班	-5.357	-8.850	-8.041	-13.792	-14.725	19 林班
chem_18	台東蘇鐵	19 林班	-7.256	-8.385	-11.201	-20.939	-16.517	19 林班
chem_19	台東蘇鐵	19林班	-7.788	-12.044	-11.331	-21.665	-12.955	19 林班
chem_20	台東蘇鐵	19 林班	-6.984	-7.735	-11.233	-20.604	-16.155	19 林班
chem_22	台東蘇鐵	19 林班	-7.527	-6.624	-5.415	-11.607	-14.543	40 林班
chem_23	台東蘇鐵	19 林班	-8.008	-8.216	-12.717	-25.195	-17.705	19 林班
chem_24	台東蘇鐵	19林班	-7.521	-8.170	-8.186	-16.560	-15.429	19 林班
chem_26	台東蘇鐵	19林班	-7.035	-9.960	-7.341	-15.216	-14.150	19 林班
phys_1	台東蘇鐵	19林班	-9.961	-12.963	-10.554	-22.427	-15.396	19 林班
23_2	台東蘇鐵	23 林班	-10.722	-6.873	-6.725	-10.645	-16.484	40 林班
23_3	台東蘇鐵	23 林班	-11.281	-9.633	-11.069	-18.400	-18.466	23 林班
23_5	台東蘇鐵	23 林班	-11.053	-7.319	-8.616	-9.525	-16.140	23 林班
23_6	台東蘇鐵	23 林班	-13.376	-10.062	-11.215	-11.202	-16.893	23 林班
23_8	台東蘇鐵	23 林班	-10.148	-6.417	-7.961	-10.125	-15.827	23 林班
23_9	台東蘇鐵	23 林班	-12.142	-10.215	-11.487	-15.990	-17.870	23 林班
23_10	台東蘇鐵	23 林班	-9.302	-7.926	-7.289	-15.614	-14.574	40 林班
23_11	台東蘇鐵	23 林班	-10.659	-9.609	-12.592	-18.529	-16.582	23 林班
23_12	台東蘇鐵	23 林班	-12.540	-10.288	-13.397	-17.830	-17.748	23 林班
23_14	台東蘇鐵	23 林班	-9.554	-7.743	-7.860	-14.111	-16.813	23 林班
23_15	台東蘇鐵	23 林班	-7.198	-7.087	-8.568	-14.526	-17.002	23 林班
23_16	台東蘇鐵	23 林班	-13.002	-9.058	-11.157	-13.823	-18.427	23 林班
23_17	台東蘇鐵	23 林班	-7.113	-7.624	-7.100	-15.045	-12.739	40 林班
23_18	台東蘇鐵	23 林班	-5.747	-7.298	-5.997	-13.787	-14.727	19 林班
23_20	台東蘇鐵	23 林班	-13.892	-8.551	-10.778	-15.578	-15.636	23 林班
23_21	台東蘇鐵	23 林班	-8.873	-5.200	-6.258	-9.365	-13.758	23 林班
23_22	台東蘇鐵	23 林班	-11.686	-10.463	-9.778	-17.339	-21.010	40 林班
23_23	台東蘇鐵	23 林班	-9.049	-6.003	-7.326	-12.309	-15.147	23 林班
23_24	台東蘇鐵	23 林班	-10.211	-6.523	-8.425	-13.282	-14.928	23 林班
23_25	台東蘇鐵	23 林班	-11.548	-10.453	-12.753	-21.651	-18.808	23 林班
23_26	台東蘇鐵	23 林班	-9.456	-8.156	-12.516	-23.483	-16.443	23 林班
23_27	台東蘇鐵	23 林班	-10.450	-10.702	-6.898	-10.621	-15.871	40 林班
23_28	台東蘇鐵	23 林班	-8.579	-5.570	-9.415	-17.295	-13.900	23 林班
23_29	台東蘇鐵	23 林班	-8.641	-5.518	-8.642	-11.649	-14.159	23 林班
23_30	台東蘇鐵	23 林班	-8.931	-6.590	-7.188	-12.512	-16.716	23 林班
23_31	台東蘇鐵	23 林班	-7.336	-5.780	-9.181	-16.272	-17.290	23 林班
23_32	台東蘇鐵	23 林班	-8.982	-6.515	-7.578	-12.327	-13.037	23 林班
23_33	台東蘇鐵	23 林班	-9.620	-7.803	-10.629	-14.411	-18.809	23 林班

144 1. 12.15.	11.14	الاتلار مالد			Assignme	ent Values (L	log likelihood)	
禄本 號	物種	族群	19林班	23 林班	40林班	海岸山脈	CR 野生	Assigned Pop
23 34	台東蘇鐵	23 林班	-7.948	-4 439	-6 568	-11.859	-15 283	23 林班
23 35	山南莊端	23 井 班	-11 863	-11 279	-11.085	-16 227	-19 091	40 井 邗
23_33	口不默到	23 14 14	-11.805	-11.279	-11.085	-10.227	-19.091	40 秋山
23_36	台東穌頸	25 杯斑	-9.243	-6.203	-5.911	-7.988	-17.358	40 杯斑
23_37	台東蘇鐵	23 林班	-8.965	-5.277	-8.125	-12.655	-15.283	23 林班
23_38	台東蘇鐵	23 林班	-10.182	-6.839	-10.147	-14.145	-14.485	23 林班
23 39	台東蘇鐵	23 林班	-11.136	-7.113	-7.773	-10.133	-17.152	23 林班
23 40	台東蘇鐵	23 林班	-10.651	-7.312	-7.482	-13 654	-14 967	23 林班
23 41	山南莊端	23 林 班	11 718	5 770	8 741	8 674	14 793	23 th H
23_41	口个脉斑	23 11 11	-11./18	-5.770	-0.741	-0.074	-14.793	23 4744
23_42	台東穌頸	25 杯斑	-8.322	-6.807	-9.835	-17.387	-15.//8	25 林坦
23_43	台東蘇鐵	23 林班	-9.114	-6.047	-7.116	-12.734	-13.025	23 林班
23_44	台東蘇鐵	23 林班	-8.006	-7.122	-7.570	-16.704	-17.124	23 林班
23_46	台東蘇鐵	23 林班	-11.015	-8.690	-9.544	-16.394	-15.799	23 林班
23 48	台東蘇鐵	23 林班	-8.968	-6 422	-9.545	-15.228	-14 173	23 林班
23 /9	ム車蘇端	23 林班	_9 975	-7 822	-8 655	-14 257	-16.067	23 林班
23_49	口不默避	23 11 11	-9.975	-7.622	-8.055	-14.257	-10.007	23 40.91
25_50	台東穌頸	25 林班	-8.108	-4.832	-7.012	-12.162	-15.555	25 林班
23_51	台東蘇鐵	23 林班	-9.045	-6.182	-9.309	-12.085	-14.724	23 林班
23_52	台東蘇鐵	23 林班	-9.978	-5.245	-7.329	-11.719	-15.225	23 林班
23_53	台東蘇鐵	23 林班	-10.899	-8.634	-13.391	-18.559	-19.191	23 林班
23 54	台東蘇鐵	23 林班	-8.620	-6.620	-9.108	-14.028	-13.413	23 林班
40_1	ム車蘇端	40 林 班	-10.872	-7 708	-9.023	-12 702	-14 190	23 林班
40_1	口不脉战		-10.072	-7.700	-7.025	-12.702	-14.170	
40_2	日 東穌戰	40 林班	-8.780	-7.507	-7.218	-14.116	-14.914	40 林班
40_3	台東蘇鐵	40 林班	-4.680	-8.427	-6.843	-18.524	-11.683	19 林班
40_4	台東蘇鐵	40 林班	-8.492	-7.433	-7.666	-10.580	-17.961	23 林班
40_5	台東蘇鐵	40 林班	-6.782	-6.476	-4.837	-10.761	-13.693	40 林班
40 6	台東蘇鐵	40 林班	-7.523	-8.118	-6.229	-13.489	-16.146	40 林班
40.7	ム車蘇端	40 林 班	-12 565	-10 767	-9 578	-11 879	-18 982	40 林 班
40_1	口不脉战		-12.505	-10.707	-5.570	-11.077	-16.002	40 +k rh
40_10	日 東穌戰	40 林班	-8.762	-9.504	-3.799	-10.100	-10.295	40 林班
40_11	台東穌鐵	40 林班	-9.653	-9.968	-6.558	-14.123	-15.958	40 林班
40_12	台東蘇鐵	40 林班	-9.575	-7.501	-8.938	-12.188	-15.911	23 林班
40_13	台東蘇鐵	40 林班	-7.767	-8.151	-6.147	-13.421	-16.413	40 林班
40 14	台東蘇鐵	40 林班	-13.964	-13.146	-10.104	-13.138	-18.366	40 林班
40_15	台車蘇鐵	40 林班	-11 944	-11 112	-9 469	-14 447	-14 070	40 林班
10_15	山東蘇磁	10 井 垣	7 025	9 452	7 5 6 9	14,800	15.268	10 井坦
40_10	口不默到	40 杯垣	-7.923	-0.452	-7.508	-14.699	-13.208	40 秋垣
40_17	台東蘇鐵	40 杯班	-10.150	-9.254	-8.560	-16.211	-16.5/1	40 林班
40_18	台東蘇鐵	40 林班	-9.894	-8.199	-6.235	-11.155	-14.963	40 林班
40_19	台東蘇鐵	40 林班	-8.457	-6.135	-6.925	-9.995	-15.914	23 林班
40_20	台東蘇鐵	40 林班	-6.806	-7.680	-5.430	-13.135	-13.803	40 林班
40_21	台東蘇鐵	40 林班	-10.246	-12.863	-6.918	-15.050	-18 693	40 林班
40.22	山南莊端	40 林 班	10.081	8 825	8 171	12,000	10.823	10 H H
40_22	口不默避	40 H II	-10.981	-0.023	-0.171	-12.200	-19.623	
40_23	百米默鉯	40 秋斑	-10.515	-5.289	-9.811	-14.181	-13.541	2.5 秋功
40_24	台東蘇鐵	40 林班	-9.091	-10.140	-6.740	-12.502	-17.606	40 林班
40_25	台東蘇鐵	40 林班	-6.544	-9.049	-8.768	-15.657	-15.315	19 林班
40_26	台東蘇鐵	40 林班	-8.401	-8.630	-6.571	-12.780	-12.517	40 林班
40 27	台東蘇鐵	40 林班	-10.605	-12.119	-6.620	-12.288	-18.116	40 林班
40 28	台東蘇鐵	40 林班	-9.070	-7 318	-7 099	-14 365	-14 821	40 林班
40_20	山東花山	40 ++ th	0.100	11 911	7.340	17 742	15 256	40 ++ rJr
40_29	百米默鐵	40 杯斑	-9.109	-11.011	-7.340	-17.743	-13.230	40 秋斑
40_30	台東穌鐵	40 杯班	-12.973	-11.312	-8.745	-13.092	-10.835	40 杯堆
40_31	台東蘇鐵	40 林班	-10.427	-6.560	-6.071	-6.586	-16.818	40 林班
40_32	台東蘇鐵	40 林班	-12.207	-10.721	-9.808	-16.511	-13.829	40 林班
40 33	台東蘇鐵	40 林班	-10.509	-10.210	-5.717	-12.480	-17.126	40 林班
40_34	台東蘇鐵	40 林班	-8 669	-10 481	-9.077	-15 944	-17.088	19林班
40.35	山南莊端	40 林 班	10 537	10 347	6 4 6 5	10 302	16.018	40 林 班
40_33	口不默到	40 杯垣	-10.557	-10.347	-0.403	-10.302	-10.918	40 秋垣
40_36	台東穌頸	40 杯班	-9.739	-12.209	-/.38/	-11.589	-17.589	40 林班
40_37	台東蘇鐵	40 林班	-8.235	-10.081	-6.220	-10.804	-17.481	40 林班
40_38	台東蘇鐵	40 林班	-8.493	-8.722	-5.266	-11.568	-16.476	40 林班
40_39	台東蘇鐵	40 林班	-7.587	-5.441	-6.741	-11.909	-17.113	23 林班
40 41	台東蘇鐵	40 林班	-9 474	-6 611	-6738	-11 664	-13 416	23 林班
40 43	山南莊端	40 ±± ±	_0 0/15	-12 070	-10/156	-17 318	-21 420	10 林 邗
40 44	口不默戰	TU 11-91 10 11 -1-	-7.743	-12.079	7.007	15.046	-21.420	1 ノ イヤーシュ 10 ユユ エリア
40_44	日 果穌鐵	40 杯堆	-8.265	-8.090	-7.087	-15.946	-19.227	40 杯址
40_45	台東蘇鐵	40 林班	-10.283	-7.241	-8.290	-15.634	-16.076	23 林班
40_47	台東蘇鐵	40 林班	-8.513	-7.679	-8.135	-13.441	-18.985	23 林班
C1	台東蘇鐵	海岸山脈	-9.670	-7.576	-6.691	-7.753	-16.044	40 林班
C3	台東蘇鐵	海岸山脈	-14.420	-12.984	-12.896	-9.055	-15.995	海岸山脈
C4	台車鞋端	海岸山脈	_18 157	-18 360	-17 270	-9 660	-20 177	海岸山脈
C5	山小叭叭	海岸山脈	17 107	17 200	1/ 010	9.007	15 596	海岸山脈
05	口不默戰	一一个日本	-1/.10/	-11.320	-14.010	-0.130	-13.300	一个一日加

樣本號	物種	族群			Assignme	ent Values (I	og likelihooo	I)
No.1 80	PV-IX		19林班	23 林班	40林班	海岸山脈	CR 野生	Assigned Pop
C9	台東蘇鐵	海岸山脈	-19.970	-16.680	-17.195	-9.427	-18.691	海岸山脈
C11	台東蘇鐵	海岸山脈	-11.457	-9.159	-8.473	-6.865	-19.609	海岸山脈
C12	台東蘇鐵	海岸山脈	-19.011	-16.507	-16.622	-10.732	-24.873	海岸山脈
C13	台東蘇鐵	海岸山脈	-16.436	-14.021	-14.073	-6.481	-19.209	海岸山脈
C14	台東蘇鐵	海岸山脈	-12.846	-10.846	-9.137	-6.337	-15.404	海岸山脈
C17	台東蘇鐵	海岸山脈	-12.520	-10.372	-10.897	-6.628	-15.840	海岸山脈
C18	台東蘇鐵	海岸山脈	-14 619	-10.412	-12.303	-8.554	-14.584	海岸山脈
C20	台東蘇鐵	海岸山脈	-12 663	-9.071	-8 870	-6.007	-16 177	海岸山脈
C21	山東蘇城	海岸山脈	15.005	12 424	13 625	7 805	18 264	海岸山脈
C21	口不脉战	海岸山脈	16 146	15 283	13.644	-7.805	21 485	海岸山脈
C22	口不默到 厶由花出	海岸山脈	17.521	-15.265	10.000	-0.423	-21.465	海岸山脈
C23	百米默组	海岸山脈	-17.551	-20.047	-18.899	-6.911	-20.552	海岸山脈 海島115
C24	台東蘇鐵	海 斥山脈	-13.893	-11.470	-11.216	-5.979	-17.733	海岸山脈
C25	台東蘇鐵	海斥山脈	-19./91	-21.551	-19.426	-7.917	-21.842	海斥山脈
C26	台東蘇鐵	海岸山脈	-22.620	-21.931	-20.027	-8.360	-21.493	海岸山脈
C28	台東蘇鐵	海岸山脈	-15.323	-16.532	-15.297	-6.245	-21.722	海岸山脈
C30	台東蘇鐵	海岸山脈	-23.828	-19.950	-17.609	-10.368	-21.535	海岸山脈
C32	台東蘇鐵	海岸山脈	-16.938	-20.649	-17.826	-7.523	-20.952	海岸山脈
C33	台東蘇鐵	海岸山脈	-16.801	-18.274	-16.261	-7.511	-21.557	海岸山脈
C35	台東蘇鐵	海岸山脈	-14.318	-16.295	-15.566	-6.549	-20.337	海岸山脈
C36	台東蘇鐵	海岸山脈	-14.712	-13.345	-13.507	-7.657	-19.634	海岸山脈
C101	台東蘇鐵	海岸山脈	-15.585	-14.225	-12.192	-5.887	-16.431	海岸山脈
C102	台東蘇鐵	海岸山脈	-16.093	-14.331	-12.866	-6.049	-18.104	海岸山脈
C103	台東蘇鐵	海岸山脈	-15,181	-13.594	-11.526	-5.418	-15.866	海岸山脈
C105	台東蘇鐵	海岸山脈	-15.101	-13,903	-11.822	-7.035	-18.218	海岸山脈
C106	台東蘇鐵	海岸山脈	-17 643	-14 283	-13 447	-9.726	-17 497	海岸山脈
C107	山東蘇城	海岸山脈	10 180	8 206	7.067	7.406	15 868	40 林 班
C107	口不默琐	海岸山脈	15 707	-0.290	12 700	-7.400	-15.808	40 秋班 海兰 L 账
C109	百米默鉯 ム由花出	海岸山脈	-13.707	-14.705	-12.709	-0.307	-13.700	海岸山脈 海岸山脈
CIII	百米默鐵	海岸山脈	-12.959	-10.1/1	-9.014	-4.981	-14.971	伊 仟山脈
C113	台東蘇鐵	海斥山脈	-16.248	-15.313	-15./5/	-10.793	-18.551	海斥山脈
C114	台東蘇鐵	海岸山脈	-13.019	-10.705	-11.049	-7.285	-19.108	海岸山脈
C115	台東蘇鐵	海岸山脈	-14.067	-11.037	-12.301	-6.457	-16.637	海岸山脈
C116	台東蘇鐵	海岸山脈	-22.429	-19.019	-20.628	-10.156	-21.683	海岸山脈
C117	台東蘇鐵	海岸山脈	-16.831	-13.271	-13.793	-7.387	-19.628	海岸山脈
C118	台東蘇鐵	海岸山脈	-18.614	-16.629	-16.003	-5.960	-19.111	海岸山脈
C119	台東蘇鐵	海岸山脈	-20.142	-19.300	-17.388	-6.529	-19.870	海岸山脈
C120	台東蘇鐵	海岸山脈	-16.010	-14.779	-12.632	-7.871	-17.133	海岸山脈
C121	台東蘇鐵	海岸山脈	-18.050	-15.550	-15.725	-9.803	-21.466	海岸山脈
C122	台東蘇鐵	海岸山脈	-20.634	-21.246	-18.932	-9.853	-22.516	海岸山脈
CR01	琉球蘇鐵	野生族群	-20.404	-18.758	-21.829	-21.220	-9.087	琉球蘇鐵野生族群
CR02	琉球蘇鐵	野生族群	-23.542	-22.249	-24.012	-23.831	-9.052	琉球蘇鐵野生族群
CR03	琉球蘇鐵	野生族群	-25.824	-24.514	-25.357	-24.918	-10.353	琉球蘇鐵野生族群
CR04	琉球蘇鐵	野生族群	-23.441	-25.031	-25.107	-27.299	-10.139	琉球蘇鐵野生族群
CR05	琉球蘇鐵	野生族群	-17.649	-19.429	-19.210	-21.342	-8.007	琉球蘇鐵野生族群
CR06	琉球蘇鐵	野生族群	-17.363	-19.429	-19.058	-21.342	-8.307	琉球蘇鐵野生族群
CR07	琉球蘇鐵	野生族群	-22 165	-25.069	-26 324	-28 779	-14 000	琉球蘇鐵野生族群
CR08	琉球蘇端	野北族群	-24 306	-26 185	-25.017	-31 827	-14 685	· · · · · · · · · · · · · · · · · · ·
CR09	琉球蘇鐵	野上族群	-23.850	-24 787	-24 489	-31.071	-14 822	· · · · · · · · · · · · · · · · · · ·
CR10	琉球蘇戰	与上次研	21 279	22 150	22 5 25	24 726	14.022	· · · · · · · · · · · · · · · · · · ·
CR11	いしい 東美 シン	习土沃叶	-31.276	-32.130	-32.323	-34.730	-14.298	圳以默戰51 生沃叶 広式菇供野山花群
CR12	玩玩成做	<u> 1 生</u> 供 研	-27.393	-28.000	-29.112	-31.090	-11.192	琉球默鐵51生族H 広式菇供野山花群
CR12	玩球默鍵	打生灰矸	-28.272	-28.184	-30.140	-33.194	-11.498	琉球默鐵51生族种 林林林 1814年
CR13	坑球穌頸	野生族 群	-22.359	-23.968	-24.721	-26.650	-12.473	坑球鮇頸 玎生族 群
CR14	琉球穌鐵	野生族群	-26.081	-28.254	-29.743	-30.977	-15.645	琉球蘇鐵野生族群
CR15	琉球蘇鐵	野生族群	-29.203	-28.922	-28.212	-28.225	-10.174	琉球蘇鐵野生族群
CR16	琉球蘇鐵	野生族群	-28.806	-28.154	-27.797	-33.958	-11.917	琉球蘇鐵野生族群
CR17	琉球蘇鐵	野生族群	-27.186	-26.445	-28.403	-33.849	-11.669	琉球蘇鐵野生族群
CR18	琉球蘇鐵	野生族群	-24.470	-22.950	-24.746	-29.634	-10.044	琉球蘇鐵野生族群
CR19	琉球蘇鐵	野生族群	-24.496	-24.956	-24.751	-26.721	-11.459	琉球蘇鐵野生族群
CR20	琉球蘇鐵	野生族群	-18.800	-16.322	-14.369	-17.508	-15.205	琉球蘇鐵野生族群
CR21	琉球蘇鐵	野生族群	-15.030	-13.905	-11.575	-13.609	-12.826	琉球蘇鐵野生族群
CR22	琉球蘇鐵	野生族群	-12.568	-17.689	-13.782	-21.853	-10.095	琉球蘇鐵野生族群
CR23	琉球蘇鐵	野生族群	-14.181	-17.156	-16.488	-16.253	-10.124	琉球蘇鐵野生族群
CR24	琉球蘇鐵	野生族群	-19.333	-19.653	-19.972	-16.653	-12.855	琉球蘇鐵野生族群
CR25	琉球蘇鐵	野生族群	-20.342	-19.363	-18.060	-17.327	-16.930	琉球蘇鐵野生族群
CR26	琉球蘇鐵	野生族群	-15.778	-14.637	-14.722	-16.876	-11.419	琉球蘇鐵野生族群
CR27	琉球蘇鐵	野生族群	-20.837	-22.420	-20.164	-24.302	-15,926	琉球蘇鐵野生族群
	the second second		= /	0				···· 4 4 4 4

علم ال الحال	11. 14	44 24 24		Assignment Values (Log likelihood)						
体本疏	物種	族群	19林班	23 林班	40林班	海岸山脈	CR 野生	Assigned Pop		
CR28	琉球蘇鐵	野生族群	-24 917	-24 978	-23 397	-27 258	-15 943	琉球蘇鐵野生族群		
CR20	ホポ乾米	职业长兴	29.622	27.406	20.445	26.220	12.400	ホポジは取りたかが		
CR29	琉球蘇鐵	打生族种	-28.022	-27.400	-29.443	-20.552	-13.490	坑球,床鐵打生族群		
CR30	坑球穌鐵	野生族群	-18.123	-19.346	-19.943	-24.256	-11./24	圳 球穌鐵 野生 族 群		
CR31	琉球蘇鐵	野生族群	-17.915	-20.064	-20.411	-25.859	-11.811	琉球蘇鐵野生族群		
CR32	琉球蘇鐵	野生族群	-18.060	-21.662	-18.840	-17.937	-9.336	琉球蘇鐵野生族群		
CR33	琉球蘇鐵	野生族群	-22.244	-22.841	-22.197	-23.472	-13.440	琉球蘇鐵野生族群		
CR34	琉球蘇鐵	野生族群	-23.881	-23.447	-25.675	-27.929	-13.658	琉球蘇鐵野生族群		
CR-I-01	琉球蘇鐵	官蘭大學	-20.652	-19 699	-22,376	-29.048	-11 095	琉球蘇鐵野生族群		
CR-L-02	药球藓磷	一 繭 大 學	-20 137	-18 305	-19 5/18	-23 470	-9.916	药 球蘇鐵野火族群		
CR 1 02	玩话花供	丘 阑八子 它萌石 L	17 706	17 567	10.749	17 608	8 620	城城城町上城町		
CR-1-03	玩球默銦	且隙伸山	-17.790	-17.507	-19.740	-17.008	-8.020	琉球默鐵51生族辞 林林 郡山 杜 联		
CR-I-04	坑垗鮇鋷	且闌福山	-12.777	-14.462	-15.000	-23.612	-11.200	坑球鮇頸 打生 族群		
CR-O-01	琉球蘇鐵	台東成功	-20.846	-21.684	-24.210	-26.116	-11.901	琉球蘇鐵野生族群		
CR-O-02	琉球蘇鐵	台東成功	-21.458	-21.936	-24.418	-28.116	-13.276	琉球蘇鐵野生族群		
CR-O-03	琉球蘇鐵	台東成功	-20.779	-19.735	-21.833	-24.665	-12.348	琉球蘇鐵野生族群		
CR-O-04	琉球蘇鐵	台東成功	-19.724	-23.656	-23.263	-27.894	-10.171	琉球蘇鐵野生族群		
CR-O-05	琉球蘇鐵	台東成功	-23.720	-24.932	-26.894	-34.339	-10.545	琉球蘇鐵野生族群		
CR-0-06	琉球蘇鐵	台東成功	-25 646	-22 619	-25 098	-23 683	-12 440	琉球蘇鐵野生族群		
CR 0 11	功式就能	山市山上	20.052	21.022	23.076	21.124	12.099	· · · · · · · · · · · · · · · · · · ·		
CR-0-11	北北林戦	口木心上	-20.052	-21.033	-23.070	-31.124	-13.088	·加·尔·默·政·马 王·庆丹 古·甘·苏·出 职 山 长 形		
CR-0-12	琉球穌鐉	白東池上	-10.738	-17.142	-21.401	-31.008	-13.915	坑球床鐵打生族杆		
CR-0-13	坑球穌鐵	台東池上	-18.577	-18.943	-22.091	-34.279	-14.123	圳 球穌鐵 野生 族 群		
CR-O-14	琉球蘇鐵	台東池上	-20.770	-22.022	-24.971	-33.978	-17.039	琉球蘇鐵野生族群		
CT-I-01	台東蘇鐵	宜蘭福山	-14.952	-17.396	-14.482	-17.403	-13.557	琉球蘇鐵野生族群		
CT-I-02	台東蘇鐵	宜蘭福山	-8.700	-13.197	-10.029	-17.971	-9.986	19 林班		
CT-I-03	台東蘇鐵	宜蘭福山	-8.242	-8.786	-7.229	-15.470	-12.799	40 林班		
CT-Ma-01	台東蘇鐵	台東市馬亨亨大道	-10.317	-9.487	-11.288	-19.188	-15.749	23 林班		
CT-Ma-02	台東蘇鐵	台東市馬亨亨大道	-9 328	-10 160	-9 224	-18 863	-14 679	40 林 班		
CT Ma 02	山南乾磁	山東市馬官官土道	13 003	11 317	11 526	16 413	11.870	23 H M		
CT-Ma-03	口不默到	白木巾向了了八週	-13.093	-11.517	-11.520	-10.413	-11.870	2.3 秋班		
CT-Ma-04	日 東穌鐵	日来中向予予大理	-14.803	-13.555	-14.828	-22.310	-16.232	25 林班		
CT-Ma-05	台東蘇鐵	台東市馬亨亨大道	-8.849	-7.794	-7.610	-15.375	-10.479	40 林班		
CT-Ma-06	台東蘇鐵	台東市馬亨亨大道	-8.731	-10.627	-8.236	-11.613	-12.664	40 林班		
CT-Ma-07	台東蘇鐵	台东市马亨亨大道	-8.735	-8.004	-7.522	-15.189	-13.715	40 林班		
CT-Ma-08	台東蘇鐵	台東市馬亨亨大道	-13.227	-14.015	-15.652	-22.530	-16.668	19 林班		
CT-Ma-09	台東蘇鐵	台東市馬亨亨大道	-14.657	-12.361	-14.950	-22.420	-19.278	23 林班		
CT-Ma-10	台東蘇鐵	台東市馬亨亨大道	-7.826	-9.203	-8.688	-17.114	-14.757	19 林班		
CT-Ma-11	台東蘇鐵	台東市馬亨亨大道	-11 857	-13 215	-11 859	-12 900	-13 113	19林班		
CT Ma 12	山南蘇端	山東市馬宮宮大道	11.537	12 701	14 202	20.011	10.068	10 # #		
CT-Ma-12	口不默戰	口本中心了了八道	-11.552	-12.791	12 824	-20.911	-19.008			
CT-Ma-15	百米縣鐵	百米中两了了入道	-12.772	-10.454	-12.654	-16.277	-13.302	2.5 杯班		
CI-Ma-14	台東穌鐵	台東巾馬亨亨大道	-12.030	-11.698	-12.706	-16.494	-15.939	25 林班		
CT-Ma-15	台東蘇鐵	台東市馬亨亨大道	-16.244	-14.407	-13.741	-21.113	-15.749	40 林班		
CT-Ma-16	台東蘇鐵	台東市馬亨亨大道	-18.530	-17.060	-17.966	-23.827	-17.627	23 林班		
CT-Ma-17	台東蘇鐵	台東市馬亨亨大道	-18.589	-19.310	-18.982	-27.295	-17.646	琉球蘇鐵野生族群		
CT-Ma-18	台東蘇鐵	台東市馬亨亨大道	-17.880	-19.303	-19.194	-24.990	-16.185	琉球蘇鐵野生族群		
CT-Ma-19	台東蘇鐵	台東市馬亨亨大道	-17.928	-20.066	-20.304	-26.473	-15.427	琉球蘇鐵野生族群		
CT-Ma-20	台東蘇鐵	台東市馬亨亨大道	-13.977	-15.730	-16.221	-22.915	-17.531	19 林班		
CT-0-01	台東蘇鐵	台東關山	-18 // 5	-15 165	-17 756	-23 294	-17 705	23 林班		
CT 0 02	山東花山	山東東西	12 705	11 007	12 712	19 951	-17.705	23 H th		
CT-0-02	口不默到	口木尔你	-12.795	-11.907	-12.712	-10.001	-20.723	2.3 秋班		
CT-0-03	日果,林鐵	白東隆田	-13.527	-11.490	-11./03	-19./18	-19.001	25 林班		
CT-O-04	台東穌鐵	台東崁頂	-15.553	-15.957	-16.231	-24.926	-20.427	19 林班		
CT-O-05	台東蘇鐵	台東崁頂	-10.484	-10.844	-11.492	-19.528	-18.105	19 林班		
CT-O-06	台東蘇鐵	台東關山國中	-10.054	-9.814	-9.651	-16.892	-15.931	40 林班		
CT-O-07	台東蘇鐵	台東關山	-17.646	-15.643	-15.842	-24.785	-18.067	23 林班		
CT-O-08	台東蘇鐵	台東都蘭	-18.503	-15.599	-15.605	-20.623	-18.610	23 林班		
CT-O-09	台東蘇鐵	台東東河	-13.969	-11.121	-12.199	-20.504	-14.707	23 林班		
CT-O-10	台東蘇鐵	台東都蘭	-15.521	-16.826	-14.615	-18.858	-19.406	40 林班		
CT-0-11	台東蘇織	台東關小國中	-8 556	-10 230	-8 820	-19 263	-16 608	19林班		
CT-0 14	山市莊磁	ム車關小園山	_0 268	-10 129	_8 086	-18 190	_17 120	40 ±± ===		
CT O 40	口个脉斑 ム击扩丛	口不開山門下	-7.200	12 5 9 2	10 002	10.100	16 167	10 ++ -		
CT-0-40	日本鮮戦	百水果門	-10./99	-13.382	-10.803	-19.707	-10.40/	17 朴斑		
CI-R-01	台東蘇鐵	台東瑞源	-9.080	-8.597	-0.257	-15.933	-12.646	40林班		
CT-R-02	台東蘇鐵	台東瑞源	-9.726	-12.378	-9.388	-16.166	-13.452	40 林班		
CT-R-03	台東蘇鐵	台東瑞源	-6.774	-8.609	-7.394	-16.117	-10.980	19 林班		
CT-R-04	台東蘇鐵	台東瑞源	-8.794	-8.785	-5.792	-11.381	-14.184	40 林班		
CT-R-05	台東蘇鐵	台東瑞源	-8.695	-9.655	-9.670	-15.519	-15.802	19 林班		
CT-R-06	台東蘇鐵	台東瑞源	-8.496	-12.068	-9.110	-15.175	-12.504	19 林班		
CT-R-07	台東蘇鐵	台東瑞源	-11 692	-12 268	-12 314	-20 057	-17,517	19 林班		
CT-R-08	台東蘇鐵	台東瑞源	-10 274	-11 331	-11 355	-19 481	-12,190	19林班		

طع ال تعل	11.14	¥12 44	Assignment Values (Log likelihood)					
体本號	物種	族群	19林班	23林班	40林班	海岸山脈	CR 野生	Assigned Pop
CT-R-09	台東蘇鐵	台東瑞源	-11.822	-11.505	-11.847	-21.673	-14.236	23 林班
CT-R-10	台東蘇鐵	台東瑞源	-11.231	-9.425	-11.410	-17.236	-11.467	23 林班

期末報告審查意見回覆

委員意見

(一)蔣鎮宇委員	回覆
 本計畫執行進度如預期,成效良好, 及有效的資訊。 研究不應侷限於學術考量,要考量角 具體政措施之建議,故本計畫應提供 確的保育策略。 是否考慮根據不同的 haplotypes 或 進行保種?以確保遺傳多樣性被有效。 宜根據研究結果,預測介殼蟲的危害 性的衝擊。 未來研究宜區分不同年齡級的遺傳多 究。 族群間的基因是否混合,並不會有太 	中報 ,並提供必要 1. 已於結案報告中補述不同棲地保育方案。 2. 不同族群及林班地的 genotypes 組成頻率不同, 建議保育的經營管理單元以各地分別進行。 能提供政府施 建議保育的經營管理單元以各地分別進行。 進朱不同棲地明 3. 介殼蟲危害造成族群數量下降,可能造成遺傳多 樣性的降低,但影響程度需進行更進一步的研究 調查。 genotypes, (保育。 4. 希望林務局能持續支持保育遺傳研究,針對不同 年齡層的台東蘇鐵進行遺傳多樣性的監測。 5. 自然情況下的基因交流在演化過程中是正常的情 形,但若是因人為栽種加速基因交流的情況則盡 量避免,尤其是將來要移回野生棲地的植株更應 避免人為干擾下的種間基因交流。
(二)簡慶徳委員	回覆
 報告第2頁,五、研究成果(2):族君 大小屬於中等程度,請具體敘述此「 此段第3頁第2-3行,海岸山脈台算 東紅葉村—間「遺傳歧異度?」無顯譯 族群間「遺傳歧異度?」亦無顯著差. 報告第3頁,六、建議(2):林班境戶 性(或困難度),就種子採集、白輪眉 鐵小灰蝶危害程度考量。建議(3):如 予具體建議。 第一章前言第二段第6行,—存活为 之久的認知。請改為約二億年前的認 4. 第一章前言第二段第6行,「一存活为 之久的認知。請改為約二億年前的認 4. 第一章前言第二段第9.12行,「他伯 產量—,種子產量則有高度變異,一 年齡結構—。」此段語意不清楚,訪 一下。接著第15行「同工酶」or「」 第一章前言第五段第9-12行,部分名 「,」逗號。 第三章研究成果,1.中性基因座檢涉 麼?族群分化?遺傳變異?與後面的勞 和基因交流關係如何。何謂平衡天擇 句話說明。2.19 林班 80%的基因座 衡,此表示族群大小,非逢機交配? 	 群遺傳多樣性 1. 遺傳多樣性程度詳見表三;顯著性分析以 Student's t test 檢測,兩兩比對間所得之] 值皆大於 0.05,顯示各組比較間均無顯著差異。 值皆大於 0.05,顯示各組比較間均無顯著差異。 此部分為摘要性描述,依結案報告格式,此部分 不再於結案報告中陳列。 內復育之可行 2. 此部份補述於第四章:討論與建議。 3. 已改為二億年前。 4. 已於文中修正敘述方式並補充說明。 5. 已加上逗號。 6. 中性基因座檢測目的是挑出分化程度過高或過低 的基因座並加以排除,以避免這些分化程度偏差 較大的基因座影響整體的遺傳多樣性的表現。通 常分化過低的基因座可能是因為受到異型合子率 過高的影響,而異型合子率過高則可能是由於受 到平衡天擇 (balancing selection)的壓力所 致,該天擇壓力青睐兩種不同對偶基因的組合, 而增加其適合度,故族群中存在高比例的異型合 子,故稱為平衡天擇。 7. 有效族群大小與哈溫平衡無直接關係。台東蘇鎖 的族群大小可能受到環境變化影響,推測主要受 非逢機交配所致,這與棲地零碎化或林下傳粉者 遷移距離受限等因素有關。
(三)楊宏志主席	

1. 2.	科學研究若能適時給予行政部門具體建議或支持 論述,再透過媒體文宣以常民可接受的文章形式 披露,讓民眾獲得讓學術研究、行政亮點的資訊。 台東蘇鐵保育尺度的選擇,應以維持族群健康與 持續發展為優先考量。	1. 2. 3.	已根據各委員的建議,重新草擬具體的保育工作 建議。 已擬出新聞稿,提供林務局參考作為發布訊息之 用。 境外復育的植株可考慮進行農藥的噴灑,降低害 蟲干擾,在人工苗圃進行化學防治並不會影響野 生棲地的生態環境。
(四)管立豪委員		回看	t
1. 2. 3.	第40林班位置介於19與23林班之間,故其蘇鐵 基因已有混種,可否套繪地形圖來顯示其位置及 地形狀況(較大地形圖)。 海岸山脈部分之更新是受植株間距離及林木鬱閉 太密所影響,受病蟲害影響較少,可否採用人工 干擾,來進行境內復育工作。 境外保種復育的種源,應擴大採集地點,尤其是 台東紅葉地區。	1. 2. 3.	40 林班位於 13、23 林班間,雖帶有其他兩林班 的基因型,但仍具有其特殊性。 海岸山脈的植株密度低,傳粉受限導致結實率過 低,建議未來的復育工作可以側芽進行繁殖,或 進行組織培養的方式增加數量。 目前境外復育的種源多來自 19 林班,建議未來的 採種應針對各林班分別進行,並仔細紀錄採集樹 種編號、GPS 位置等,以供未來追蹤。採集種子 亦須依不同母株進行區分,避免將不同母株的子 嗣混淆,造成未來追蹤上的困難。
(∄)劉瓊蓮委員	回覆	Î.
1.	以實際執行管理單位立場,完全贊同蔣鎮宇委員 的意見;保育單元是否真的要細分到亞群?而以台 東蘇鐵現生野生族群的分布區域如此侷限,要以 亞群為單位執行,恐困難重重。 台東蘇鐵自 2005 年發現白輪盾介殼蟲感染後,劃 設 20 個樣區每月調查監測,累計至今樣區內台東 蘇鐵死亡率近七成;其死亡原因恐非單一感染介 殼蟲造成的,亦包括東陞蘇鐵小灰蝶、動物取食 嫩葉,以及生育地環境改變及老化。無論何種原 因,野生台東蘇鐵族群目前都面臨存續的關鍵時 刻,是否要人為介入進行復育?境內或境外復育? 建議請中央主管機關儘早決策。	1. 2. 3.	保育單元的規劃可大可小,建議由管理經營單位 實際執行面考量保育單元的尺度。本研究提供較 細緻的分群(亞群),僅提供管理單位執行上的參 考。 實際進行採種時應詳加紀錄個體編號、GPS 位置 等資訊,並避免將不同母株採下的種子混放,應 加以區隔,攜至境外進行栽種時亦應作好編號管 理,以助未來移植、栽種時可供對照。 根據會議討論,境內復育的難度較高,建議可將 種子、種苗仔細紀錄後攜至境外進行栽種、復育, 然為避免受近緣種琉球蘇鐵之花粉污染,建議在 植株達青少年時期未結毬果前,便進行境內移 植。因苗圃環境屬人工環境,農藥處理對野外棲 地影響甚微,故境外栽種的植株建議可實施化學 防治(噴灑農藥)趨蟲,以提高種苗存活率。
(六)沈怡伶委員	回看	1
1. 2. 3.	本計畫成果符合原訂目標,執行成效良好。 報告中有關境外栽種的台灣蘇鐵的來源檢測,呈 現有 9%琉球蘇鐵,是否表示已有基因汙染?對於 未來境外保育如何降低基因汙染的機率,請提供 實務上的建議。 對於台東蘇鐵的保育及保種,報告中提出「境內 保育」及「境外保育」二種,經前面委員討論, 考慮採種的困難,認為「境外保育」應是比較可 行的作法,可否補充進行境外保育實務上的作法 或建議,提供行政單位參考,並納入報告。	1.	野生族群內的台東蘇鐵未見測出屬於琉球蘇鐵型 的植株,但境外栽種的植株有高達9%的比例屬餘 琉球蘇鐵,因此推測的確因人為栽種之故造成部 分的基因污染。建議在境外栽種上應盡量建立台 東蘇鐵與琉球蘇鐵的隔離帶,避免混種。因琉球 蘇鐵的研究中有效的傳粉距離約在2~10公尺,故 建議隔離帶的距離至少在10公尺以上,並可在隔 離帶間栽植其他樹種進行隔離。 根據會議討論,境內保育似乎難度很高,因此建 議台東蘇鐵的保育工作可以境外保育為主,唯為 避免種間雜交或基因污染,建議境外保育之植株 在未達繁殖年齡前,就要移植回野外棲地,以降 低基因污染的問題。

其他與會人員發言

(一)保育組張弘毅科長	回覆
 依黃生校長調查,台東蘇鐵族群於較高海拔地區, 是否因立地較開闊,故其族群較健康,及較未受白 輪盾介殼蟲之影響,故可維繫其族群,建議應釐清 或調查。 海岸山脈之台東蘇鐵,受白輪盾介殼蟲影響較小, 故其死亡是否受蟲害影響,或其立地鬱密影響?亦 可了解,俾利提出復育方案。 	 依實際觀察的結果,分布海拔在800公尺以上的 個體染病率的確較低,但此高度亦為台東蘇鐵分 布海拔上限,是否以海拔高度作為防治介殼蟲的 依據,仍需更進一步的研究與討論。 海岸山脈植株密度較低,可能是不利介殼蟲散播 的原因,唯造成海岸山脈族群介殼寵影響較小的 確切原因仍待更進一步的調查。
(二)造林生產組蕭祺暉科長	回覆
造林組目前正委託屏科大建置苗木生產履歷,若台東 蘇鐵苗木不宜混種,可作進一步說明,以期瞭解能否 與苗木生產履歷配合。	 目前境外栽種的台東蘇鐵質株有 9%檢測屬於琉 球蘇鐵型,但野生族群則無,顯示境外栽種的蘇 鐵可能因混種加大種間基因交流的程度,因此建 議在台東蘇鐵與琉球蘇鐵的栽種上需建立 10 公 尺以上的隔離帶。 不同族群、不同林班地的台東蘇鐵有明顯的遺傳 結構,顯示族群間有明顯的遺傳分化,建議未來 在境外栽種時應作區隔,再分別移植回原野生棲 地。 另可依管立豪委員之建議,在境外栽種的植株取 部分植株進行人工雜交的實驗,藉由人為方式提 高異型合子率並作為抗病、抗蟲品系的篩檢。唯 人工雜交之實驗植株在初期不宜移植回原棲 地,以避免因人為操作加速野生族群的基因混 雜。
(三)造林生產組黃淑玲技士	回覆
台東蘇鐵境外復育部份,在台東龍泉苗圃種植 500 多 株苗木,但因今年颱風災損,只剩 1/2 可供境外復育 應用。	境外復育植株建議在栽種時加大栽種間距,以降低介 殼蟲擴散速率,並可同時施予農藥殺蟲以提高種苗存 活率。